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Abstract— Fast moving but power hungry unmanned aerial
vehicles (UAVs) can recharge on slow-moving unmanned ground
vehicles (UGVs) to cooperatively perform tasks over wide areas.
Such a cooperation can be achieved efficiently by solving a
path planning problem. On top of solving a path planning
problem, the problem of routing an heterogeneous set of
vehicles in an optimal fashion is quite challenging. In order
to solve the computationally expensive path-planning problem
in a reasonable time, we created a two-level optimization
approach with heuristics. At the outer level, the UGV route
is parameterized by considering which set of locations to
visit in the scenario and the UGV wait times to recharge
UAVs and at the inner level, the UAV route is solved by
formulating and solving a vehicle routing problem with capacity
constraints, time windows, and dropped visits. The UGV free
parameters need to be optimized judiciously in order to create
high quality solutions. We explore two methods for tuning
the free UGV parameters: (1) a Genetic Algorithm (GA), and
(2) Asynchronous Multi-agent architecture (A-teams). The A-
teams uses multiple agents to create, improve, and destroy
solutions. The parallel asynchronous architecture enables A-
teams to quickly optimize the parameters. Our results on test
cases show that the A-teams produces similar solutions as GA
but is 2-3 times faster.

1. INTRODUCTION

There has been a considerable increase in the use of
the small Unmanned Aerial Vehicles (UAVs) across diverse
fields such as entertainment and logistics [1]. The reason for
such a widespread adaption is because they are agile robots
that can navigate at high speeds in complex environments
otherwise inaccessible to humans [23]. Although UAVs are
fast, they are limited by their battery capacity to a relatively
small area [26].

To complete tasks over wider areas, UAVs could be
provided mobile recharging stations that are hosted by un-
manned ground vehicles (UGV). Such cooperative routing
of a team of UAV-UGVs have been utilized in tasks such
as inspection in cluttered environments [8], congested urban
environments [5] and post-disaster relief [13], [6].
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The cooperative routing of UAV and mobile recharging
stations is complex and computationally challenging [2].
The formulation of the problem involves minimizing a cost
such as the time or fuel consumption while constraining
the fuel capacity and speed limits of the UAV and UGV
and ensuring that they are able to rendezvous efficiently.
Although it is relatively easy to formulate the problem, it
is difficulty to solve the formulation using exact methods
due to the combinatorial nature of the problem. However,
using suitable heuristics, it is possible to achieve high quality
solutions relatively quickly.

There has been a considerable work done in the literature
related to solving fuel-constrained routing of UAVs. Sun-
dar et. al., [24] worked on Fuel-Constrained UAV Routing
Problem where a generalization of the asymmetric Traveling
Salesman Problem (TSP) is solved using Approximation
algorithm and fast heuristics. A Mixed Integer Programming
Problem formulation is also proposed to obtain optimal
solutions. Here, a single UAV is used and gets recharged
on fixed depots. Venkatachalam et. al., [27] modeled a
multiple fuel-constrained UAV routing problem with fixed
recharging depots. Here, the authors implemented a two-
stage stochastic optimization problem with uncertainties in
the fuel consumption of UAVs. Heuristics are used to achieve
high quality solutions with faster computing time.

Some extensions in the aspect of heterogeneous vehicle
routing were also considered in the literature to overcome
some of the limitations existed in such fuel-constrained
UAV routing problem with fixed depots. Subramanian et.
al. [20] considered the vehicle routing problem of multiple
fuel-constrained UAVs and a single UGV that acts as a
mobile recharging vehicle. The problem is being solved in
a tiered fashion. The authors used K-means clustering and
TSP to solve UGV routing problem, and then implemented
Vehicle Routing Problem (VRP) with fuel, time and optional
node constraints. The aforementioned work is extended in
[21] where a more generalized approach is taken to solve
several different scenarios and proved the robustness of the
algorithm. The above works allows the UGV to move freely
on any paths, but there are some works in the literature
that considers heterogeneous UAV-UGV vehicle routing with
UGV constrained to move on certain prescribed paths. This is
a challenging problem because each of these vehicles have
different constraints on speed and fuel capacity. Maini et
al. [14] considered the problem of routing a single fuel-
constrained UAV to a set of task locations while being
recharged by stopping at a UGV traveling on a road net-
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work. They solved the problem using a two-stage approach.
First, using the UAV range constraints, they found a set of
recharging depots. Second, they formulated a mixed-integer
linear program and solved for the path of both the UAV and
UGV. Safwan et. al., [16] performs a bi-level optimization on
a road network with prescribed UGV paths and the obtained
simulation results are validated by performing a lab-setup
experiment, which asserts the ability to map from simulation
setup to real-time practical deployment. The work in [19]
also allows the UGV to move freely only on prescribed paths
and is also followed in this paper.

Since UGV has a fixed route, the heuristics for the UGV
could be modeled as a parameter tuning problem as that
would provide a better solution by tuning the heuristic
parameters. [9] applied Bayesian Optimization to tune the
hierarchical decomposition algorithm parameters and thus
helped to achieve optimal solutions at a faster rate. Although
such algorithms help us to achieve globally optimal solutions,
they come at a cost of significant computational time. This
was seen from the previous work by the authors [19] where
GA and Bayesian Optimization (BO) are implemented for
parameter tuning to obtain the UGV route. The results from
that work show that particularly in case of GA, higher com-
putational time of about 180 minutes was needed to solve that
problem. The reason for high computational time is that these
algorithms GA and BO are basically global optimization
algorithms. Although such global optimization algorithms
perform search over a larger space, this compromises their
efficiency. Hence they can be used when the computational
time is not critical, such as offline optimization [4]. At the
same time, local optimization algorithms provide quicker
solutions, but are optimal in a small region of space.

To achieve faster global optimal solutions, Sachdev [22]
worked on proposing an architecture called A-Teams, which
was originally developed by Talukdar et. al. [25]. In A-teams,
global optimization methods search over a larger space to
find potentially feasible solutions. These are then improved
by the local optimization methods. The author implemented
two algorithms, Stochastic Quadratic Programming (SQP),
a local optimization method, and GA, a global optimiza-
tion method, in A-Teams to show how the advantages of
local and global optimization algorithms can be tapped
to produce a better result in a computationally efficient
manner. Jedrzejowicz et. al., [11] proposed A-Teams to
solve a Resource Constrained Project Scheduling Problem.
The authors perform Reinforcement Learning (RL) along
with using other optimization algorithms like local search,
tabu search to solve the problem using A-Teams. The RL
component in their architecture helps to apply dynamic
strategy for interaction between those different optimization
algorithms in an A-Team. Those authors use a middleware
called JABAT (Java Agent DEveleopment-Based A-Teams),
to implement the A-Teams architecture. Kazemi et. al., [12]
implemented A-Teams for solving a Production-Distribution
Planning Problem where each agent in their architecture
uses a GA sub-module to handle its tasks and conclude
that the combined multi-agent GA system provides better

Fig. 1. Overview of the bi-level optimization algorithm. The outer-level
block is run in parallel on multiple cores.

solutions than the individual ones for their problem. Recent
works by Jedrzejowicz et. al., [10] involves implementing
this architecture to solve a Resource Investment Problem
in which different agents use Local search, Lagrangian
relaxation, Path relinking algorithms, Crossover operators
and cooperate together to solve such a problem.

The usage of A-Teams is also found amongst the routing
problems in the literature. Rabak et. al. [17] presented the
A-Teams framework to optimize the automatic electronic
component insertion process on an inserting machine. They
implemented a combination of Quadratic Assignment Prob-
lem and Traveling Salesman Problem (TSP) in the framework
to perform optimization. The above work shows the frame-
work’s ability to handle multiple algorithms simultaneously.
Such a realization becomes helpful in this work where the
A-Teams come in hand for utilizing the local and global op-
timization algorithms, whose advantages and disadvantages
were talked about a few lines before. Barbucha et. al., [3]
worked on investigating the effects and impact of a Team of
A-Teams working in parallel to solve difficult combinatorial
optimization problems. In their work, different algorithms
cooperate together within an A-Team, and several similar
A-Teams are made to work in parallel. The computational
efficiency of their architecture is demonstrated by solving
benchmark instances in different problems like Euclidean
Planar Traveling Salesman Problem (TSP), Vehicle Routing
Problem (VRP), Clustering Problem (CP), and Resource
Constrained Project Scheduling Problem (RCPSP). Rachlin
et. al., [18] implemented the A-Teams to solve a Traveling
Salesman Problem (TSP) by using Farthest Insertion and
Arbitrary Insertion heuristic algorithms in their architecture.

The A-teams has been limited to solving basic routing
problems (e.g., TSP). Thus, the main contribution of this
work is that we use the A-teams architecture to solve
a heterogeneous and co-operative vehicle routing problem
involving a UAV and a UGV. We also compare the A-teams
architecture with results obtained using genetic algorithms
in several scenarios. The flow of the paper is as follows. We
present details about the optimization method in Sec. 2. The
results are in Sec. 3, followed by the Discussion in Sec. 4.
Finally, the conclusion and future work is in Sec. 5
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Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on July 05,2023 at 18:19:40 UTC from IEEE Xplore.  Restrictions apply. 



Feasible?

Yes

No

Nelder-Mead
algorithm

Genetic 
algorithm

No 
improvement?

Convergence 
achieved

Yes

No

Constructor agent

Improver agents 

Destroyer 
agent: 
Destroys infeasible 
solutions 
from this algorithm

Destroyer 
agent: 
Destroys infeasible 
solutions 
from this algorithm

Feasible 
solutions

Feasible 
solutions

Local population

Global population

Sorted
population

Total 
evolved 
population ->

Sorted
population

Population of
solutions

Initial population

Fig. 2. Implementation of A-Teams architecture for this cooperative routing problem.

2. METHODS
The authors developed a two-level optimization framework

[19] that uses Genetic Algorithm and Bayesian optimization
and is described in Sec. 2-A. The main contribution of
this paper is the A-teams architecture which uses the two-
level optimization framework as its basis and is described in
Sec. 2-B.

A. Conventional Two-level optimization

The Figure 1 shows the conventional two-level opti-
mization [19]. The outer level block shown in blue are the
heuristics to choose a UGV route. The UGV route heuristics
has a few free parameters. Once these parameters are set, the
inner-level block shown in orange performs the UAV route
optimization using Google’s OR-ToolsTM[7]. The UAV route
optimization is heavily dependent on the free parameters
of the UGV route. These parameters are optimized using
a genetic algorithm. The complete block (inner/outer loop)
runs several times till the genetic algorithm can no longer
improve the solution or when the maximum iteration limit
is reached.

B. Description of the proposed architecture - A-Teams

A-Teams is an architecture that uses a team of autonomous
agents to perform optimization on a given problem. The
agents have a common set of potential solutions. Each agent
works asynchronously on the potential solutions to find
better solutions which are then updated as the new potential
solutions. There are three main agents that constitute this
architecture and are described next.

1. Constructor Agent is used to develop an initial pool
of solutions using the user inputs.

2. Improver Agent is used to improve on the pool of
solutions using different optimization methods. It is impor-
tant to choose complementary optimization methods (e.g.,
global and local optimizers) to help improve the quality of
the solutions.

3. Destroyer Agent is used to discard non-optimal and
bad solutions. It does this by ranking the solutions based on
the cost and constraints satisfaction.

Populations are shared repositories for storing solutions
computed and evaluated by different agents. These are ac-
cessible by all agents.

The architecture is modular and distributed which enables
each optimizer to work independently. However, the archi-
tecture also has mechanisms to combine solutions generated
by individual optimization to realize further improvements
of the solutions. This makes the framework very powerful
producing optimal solutions in a computationally efficient
manner.

Figure 2 shows the implementation of A-Teams to solve
this problem. Note that the A-teams operates over the two-
level optimization block shown in Figure 1. The Constructor
agent utilizes a ‘randomized’ initial UGV parameter set to
construct an initial population of solutions. The algorithm
is used until the feasibility of a solution in the population
is achieved. Every time the constructor agent pulls solution
from that initial population, it fills up a current population,
that was initially empty (represented in orange box in Figure
2), until feasibility. These solutions are usually sub-optimal,
but are then passed to the Improver agent. The Improver
agents improve the solutions by using two algorithms: (1)
the Nelder-Mead, a gradient free direct search method,
that is good for local optimization and (2) the Genetic
Algorithm that is inspired from natural selection and is
good global optimization method. These two algorithms are
complementary in nature; Genetic algorithm searches big
regions of the parameters set (exploration) while Nelder-
Mead improves on the solution in the vicinity of the current
solution (exploitation).

We now describe Algorithm 1 used in A-teams. On lines
1 and 2 the constructor agent role is to generate feasible
solutions for the improver agent. A random initial parameter
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Algorithm 1 A-Teams architecture
Input: Population size, n; Initial population
Output: Global best solution

1: Constructor agent: Generate random initial population
with population size n;

2: Constructor agent: Perform the UAV optimization for
corresponding UGV parameter set until feasibility;

3: while Convergence is not achieved do
4: The following two improver agents work in parallel
5: Improver agent 1: Perform Nelder-Mead opti-

mization for local improvement on the current
best solution;

6: Improver agent 2: Perform Genetic Algorithm
optimization for global improvement on the cur-
rent population;

7: Destroyer agents 1 and 2: Destroy the infeasible
or already existing solutions on the fly;

8: Replace initial or old population with newly gen-
erated population;

9: Compute the fitness value for each population member
and sort them in ascending order;

10: end while

set for UGV is generated and checked if it leads to a feasible
UAV solution. After a sufficient number of good feasible
solutions are generated, the algorithm proceeds to the main
while loop that uses the constructor and destroyer agent.
When the constructor agent produces a feasible solution, the
current population which has been updated so far from the
initial population is sorted, and the role is handed over to the
Improver agents. The solutions are sorted based on the cost
and the improver agent uses the global optimizer (GA) shown
on line 5 or local optimizer (Nelder-mead) shown on line
6. These improver agents work in parallel. Thus, both, the
exploration and the exploitation happens simultaneously and
independently. Next, on line 7, the destroyer agent looks at all
the solutions and discards the infeasible solutions and those
that are already existing in the pool of solutions. Finally,
on line 8, all the good solutions are pooled together and
sorted in order to get ready for the next iteration. This process
repeats until convergence is achieved, i.e., when there is no
improvement in the population.

C. Heuristics for UGV (Outer-level)

Our heuristics for UGV route are based on maximum fuel
range of the UAV described earlier (range is shown as a
blue circle in Figure 3). Figure 4 shows the heuristics for
the UGV route. The UGV starts at the depot and travels
along the task locations. Next, the UGV is allowed to stop
anywhere in the ellipse with dashed red lines for a prescribed
time. The rationale is that in choosing a stop and wait time
is to give the UAV enough time to land and recharge on
the UGV. Next, the UGV moves to to the bottom right side
and can take another stop anywhere inside the blue ellipse
with blue dash-dot lines. We have shown two random stop
locations in each ellipse with a blue hollow circle. There are

7 parameters for the UGV heuristics; the starting location of
the UGV/UAV, the x- and y-coordinate of each of the two
stop locations, and the wait times at the stops.

D. Optimizing UAV route (Inner-level)

We formulate a Vehicle Routing Problem (VRP) with
capacity constraints to account for fuel limits, time windows
to allow for rendezvous, and dropped visits to allow the UAV
to visit some of the many vertices on the UGV path. We
constrain the UAV to a fixed speed, pre-specify the battery
capacity and service time as the UAV lands and waits on the
UGV. Constrained Programming approach is being used to
solve this VRP using OR-Tools solver.

The mathematical details are not included here because of
space constraint, but can be found in [19].

3. RESULTS

We used Python 3 for all the computations: a custom-
written genetic algorithm and Nelder Mead from Scipy
package for UGV parameter optimization, and OR-tools for
UAV optimization. All computations were done on a 3.7
GHz Intel Core i9 processor with 32 GB RAM on a 64-bit
operating system.

Figure 3 shows the problem scenarios considered in this
paper. The task locations are shown with black dots. There
are 3 recharging depots shown with a black dot that is bigger
than the one used for task locations. The UAV can travel on
the UGV or fly by itself. The UAV may be charged by the
UGV or at the depot. Both, UAV-UGV start and end at the
depot.

The blue circles represent the range of the UAV on a full
charge; the distance that the UAV can cover is the diameter
of the circle. For example, consider Figure 3 (a). If the
UAV starts from the center of the circle on a full charge,
it can return back to the center of the circle with an empty
charge if it travels straight out and back. We have drawn two
circles which are centered approximately at (1, 12.5) km and
(5, 12) km. It can be observed that from the start location, the
UAV cannot travel to the set of task locations approximately
from (7.5, 10) km to (10, 8) km. However, if the UAV starts
from the point (5, 12) km with a full charge, it can cover
those sets of task locations and return back. To enable this
solution, the UAV would need to ride with the UGV along
the UGV till (5, 12) km, then visit the task locations within
that radius and get refueled. Meanwhile, the UGV stops at
(5, 12) km location and waits for some time. Although, such
a UGV stop helps to cover additional task locations, there
are some task locations along the bottom right region that
are left out. Hence, in such case, either the UGV has to
have another stop along that region so that UAV can cover
those task locations and utilize that UGV stop to recharge or
the UGV itself should travel along that path to cover all of
those task locations. From this Figure, you can see that all 3
branches intersect at a common point (6.1, 10.8) km. Other
scenarios are considered similar to the distribution of this
scenario where three different branches meet at a point. This
illustrates some of the intricacies of choosing an appropriate
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Fig. 3. Description of different scenarios. The UAV and UGV, both start from one of the recharging depots. The task locations are shown with black
dots. The UAV range is shown with a blue circle. a) Scenario 1 b) Scenario 2 c) Scenario 3.

Parameter Range

Scenario 1 Scenario 2 Scenario 3

UGV stop 1
(km,km)

(6.02,16.82) to
(4.99, 11.65)

(11.36,4.86) to
(14.34, 7.31)

(8.95,9.48) to
(9.29, 9.38)

UGV stop 2
(km,km)

(14.70, 4.02)
to (16.96,1.45)

(7.72,6.13) to
(9.46, 13.02)

(8.61,9.82) to
(8.61, 10.07)

UGV wait 1,2
(min)

2 to 50 2 to 50 2 to 50

Starting point 1,2, or 3 1,2, or 3 1,2, or 3

TABLE I
UGV PARAMETERS AND THEIR RANGES (OUTER LOOP)

path for the UGV such that the UAV can successfully cover
the task locations at the extreme ends. This is an optimization
problem where optimal routes are to be found for both UGV
and UAV. In case of UGV, its route is modeled as a parameter
set consisting of two UGV stop locations to recharge the
UAVs, the wait time of UGV at those corresponding stops,
and the starting or ending point of the entire route plan. The
optimal solution corresponds to a UGV routes parameter set
and its subjected UAV route for which the overall objective
function is minimized.

In order to prove the computational efficiency, we present
the results on three different scenarios shown in Figure 3.
The scenarios under consideration have three branches that
intersect at a single point. Each scenario has three depots.
At each of the these depots, the UAV or the UGV may be
recharged. The UAV may also recharged when it lands on the
UGV. The UGV/UAV start their route execution from one
of the three depots. This location is one of the free UGV
parameter. All these scenarios consider the optimization
problem for 1 UGV and 1 UAV. The UAV is a custom
quadrotor with a battery capacity of 4000 mAh. The UAV
and UGV velocities when moving are fixed at 10 m/s and 4
m/s respectively. The UAV and UGV fuel capacity are 287.7
kJ and 25.01 MJ respectively.

Figure 4 shows the UGV parameters for the three sce-
narios. The black dot on the gray rectangle represents the
depot where both UGV and UAV can recharge. The large
black circles represents the locations where only the UAV
can recharge. Either of those depots represent the potential

Scenario
type

Computational
time (in minutes)

Objective (in
minutes)

A-Teams Two-level
optimiza-
tion

A-Teams Two-level
optimization

Scenario 1 37 ± 1 47 ± 2 163 166

Scenario 2 28 ± 9 82 ± 10 12 9

Scenario 3 13 ± 3 44 ± 2 18 13

TABLE II
COMPARISON OF TOTAL COST BETWEEN A-TEAMS AND

CONVENTIONAL TWO-LEVEL OPTIMIZATION FOR DIFFERENT SCENARIOS

starting location for the UAV and UGV and is an opti-
mization parameter. The small black circles represent the
task locations that need to be visited either by the UGV
or the UAV. The stopping locations for the UGV can be
either in the red ellipse or the blue ellipse. In each of this
ellipse, the x- and y-coordinate is a parameter (2 parameters
per ellipse). For each stop location, the wait time is also
a free parameter (1 parameter per ellipse). The UAV/UGV
may start at Depot 1, 2, or 3 (1 parameter). Table I shows
the UGV parameter range for the outer level. The objective
function is to minimize the time gap between completion
of UAV’s and UGV’s routes after visiting all their task
locations in the respective scenario. This kind of objective
function helps to minimize the waiting time between the
heterogeneous system after the route execution cycle.

In order to compare the two methods, an initial population
size of 30 was chosen and both algorithms were run 3 times.
Table II compares the cost and the computational time. It can
be seen that the computational time is reduced by a factor of
2 to 3 by the A-teams architecture in comparison to two-level
optimization, but the cost is within 25%.

Table III compares the A-teams solution with two-level
optimization for the same initial population for the three
different scenarios. From the value of the objective in the
table it can be seen that the results are mixed: A-teams
is better than two-level optimization for scenario 1 but not
for scenario 2 and 3. However, the difference between the
two is not substantially large. The other metrics such as the
UAV/UGV travel time, energy consumed, recharging stops,
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= [2, 60] minutes

Fig. 4. Description of different scenarios with parameters to be optimized. a) Scenario 1 b) Scenario 2 c) Scenario 3.

Parameter Optimal parameter values
Scenario 1 Scenario 2 Scenario 3

A-Teams Two-level A-Teams Two-level A-Teams Two-level

UGV stop 1 location (km,km) (4.99,11.65) (4.99,11.65) (7.92,6.90) (11.36,4.86) (8.61,10.08) (8.95,9.48)

UGV stop 2 location (km,km) (16.96,1.45) (16.96,1.45) (12.36,5.68) (8.30,8.43) (9.29,9.38) (8.61,10.08)

UGV stop 1 wait time (min) 20 20 50 21 20 22

UGV stop 2 wait time (min) 20 21 20 21 20 20

Route starting and ending
point

Depot 1 Depot 1 Depot 3 Depot 3 Depot 3 Depot 2

Metrics Scenario 1 Scenario 2 Scenario 3
A-Teams Two-level A-Teams Two-level A-Teams Two-level

Objective function (min) 163 166 12 9 18 13

Total time (min) 228 231 216 201 145 131

UGV results

Travel time (minutes) 228 231 216 201 145 131

Energy consumed (MJ) 23.16 23.19 19.50 20.89 8.16 6.31

# Locations visited 34 34 23 25 17 17

UAV results

Travel time (minutes) 65 65 204 192 127 118

Energy consumed (kJ) 460.65 460.65 1082.92 1301.78 841.72 874.73

Recharging stops on UGV 1 1 2 3 2 2

Recharging stops on Depot 0 0 2 2 1 1

# Locations visited 10 10 23 21 29 29

TABLE III
COMPARISON BETWEEN A-TEAMS AND CONVENTIONAL TWO-LEVEL OPTIMIZATION ON METRICS FROM THE OPTIMAL SOLUTION FOR DIFFERENT

SCENARIOS. THESE RESULTS ARE SHOWN FOR A SPECIFIC INITIALIZATION OF POPULATION BY CONSTRUCTOR AGENT.

locations visited are also shown. There are minor differences
between the two.

Figure 5 shows the final solution for scenario 1 at three
different time ranges (in min): 1−35, 36−65, and 66−166.
Since both two-level and A-teams produce very similar
solution, only one solution, the two-level optimization, is
shown here. The total routing time for A-teams is less than
that of the two-level optimization by about 3 min. The
UAV/UGV start at Depot 1 then they move together to the
first stop location. Here the UAV flies to cover the locations
on the top portion returning to Depot 1 to recharge. Then the
UGV travels to all the task locations and returns back to the
Depot 1. Figure 6 shows the coverage of task locations and
the recharging stops used by the UAV-UGV for the A-teams
for scenario 1. The task locations in red are those that are
covered by the UAV while those in blue are the ones covered

by the UGV. The red cross shows the stopping locations for
the UAV on the UGV for recharging. The overlaid light blue
circles indicate the range of the UAV. It can be seen that the
recharging stops are chosen strategically to enable maximum
fuel coverage for the UAV on a single charge.

4. DISCUSSION

This paper presented the A-teams framework for op-
timizing the routes of a UAV-UGV pair subject to fuel
and speed constraints. The A-teams framework uses asyn-
chronous agents to create an initial pool of solutions, improve
the pool, and then destroy the infeasible solutions. These
agent exploit parallel architecture to produce fast solutions.
When compared with conventional optimization method, A-
teams produces the solution 2−3 times faster while achieving
similar quality of solutions.
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Time range=1 - 35 min (a) (b)Time range=36 - 65 min (c)Time range=66 - 166 min

Fig. 5. Solution produced by conventional two-level optimization and A-teams on Scenario 1 are indistinguishable and are shown here. The different plot
shows the UAV and UGV route at various time-steps.
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UAV Depot

(a)

Available recharging spots
Utilized recharging spots

UGV/UAV Depot
Mission Points
UAV Depot

(b)

Available recharging spots
Utilized recharging spots

UGV/UAV Depot
Mission Points
UAV Depot

(c)

Available recharging spots
Utilized recharging spots

Fig. 6. Optimal parameter results of respective scenarios obtained using the A-Teams architecture. (a) Scenario 1 (b) Scenario 2 (c) Scenario 3

One advantage of A-teams is the use of asynchronous
agents to improve the solutions. These agents work in parallel
and hence they can be deployed independent of each other.
When the algorithm is deployed either on multiple core
or parallel computing machines, they are able to speed up
computations. Apart from that, A-Teams has the capability
to scale to multi-cores where each core could be used for
performing specific parallelized A-Teams computation with
threads in that core. This way, a combined effort of searching
for the optimal solution can be made efficiently.

Another advantage of A-teams is that the architecture
seamlessly exploits the advantages of multiple algorithms
to improve the solution. In our case, the genetic algorithm
is used to explore the search space while the Nelder-Mead
is used to locally improve the solution. Thus, we have
combined a global search with local search to improve the
solution quality. However, genetic algorithm is not sample
efficient. One could use a sample efficient method like
Bayesian Optimization if sample efficiency is important [19].

The proposed works has some disadvantages. The UGV
heuristics, the stop location and wait times, were manually
determined by hand tuning. This may be overcome by using
minimum set cover algorithm [15]. The quality of the initial
pool of solutions created by the constructor agent is critical to

ensure that the improver agent is able to improve the solution.
Thus, we had to play with a few random initial guesses till we
got a feasible solution as a starting base. Our results indicate
that the A-teams produce superior solutions for complex
scenarios (Scenario 1), but was unable to produce better so-
lutions that our baseline method of using genetic algorithms
in simple scenarios (Scenario 2 and 3) were able to. This
might indicate that the more complex A-teams architecture
might not be ideal for certain scenarios whose task space
distribution is simple, or the number and combination of free
parameters (such as stop locations, waiting times) used for
the optimization problem is very large.

5. CONCLUSIONS AND FUTURE WORK

We conclude that Asynchronous multi-agent architecture
(A-teams) is a competitive tool for solving the cooperative
heterogeneous Vehicle Routing Problem. A-teams is able to
produce good quality solutions with less computation time. It
is able to do so by using specialized agents: agents to create
solutions, agents to improve solutions globally and locally,
and agents to destroy bad solutions.

Our future work will explore methods to automate the
choosing of UGV parameters, testing the scalability of the
approach by adding more UGV parameters, more UAVS and
UGVs, and testing other algorithms such as Bayesian or
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reinforcement learning to improve the quality of the solutions
as well as the solution time.
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