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Abstract— Fast moving unmanned aerial vehicles (UAVs) are
well suited for aerial surveillance, but are limited by their
battery capacity. To increase their endurance, UAVs can be
refueled on slow moving unmanned ground vehicles (UGVs).
This cooperative routing of UAV-UGV multi-agent system to
survey vast regions within their speed and fuel constraints is
a computationally challenging problem, but can be simplified
with heuristics. In this study, we utilize heuristic approaches
to obtain feasible and near-optimal solutions to the problem,
leveraging the fuel limitations of the UAV with the minimum
set cover algorithm to identify the UGV refueling points. These
refueling stops enable the allocation of mission points to the
UAV and UGV. A standard traveling salesman formulation and
a vehicle routing formulation with time windows, dropped visits,
and capacity constraints are used to solve for the UGV and
UAV route, respectively. Experimental validation on a small-
scale testbed (http://tiny.cc/vancvz) underscores the
effectiveness of our multi-agent approach.

1. INTRODUCTION
Multi-agent systems involving Unmanned Aerial Vehicles
(UAVs) and Unmanned Ground Vehicles (UGVs) are in-
creasingly finding applications in diverse fields such as
surveillance, search and rescue, and transport, owing to their
collaborative advantage [1]–[4]. One key obstacle in such
contexts is the UAVs’ limited fuel capacity, which restricts
their operational duration and reach. However, effective
multi-agent cooperation between UAVs and UGVs can boost
mission efficiency and extend UAV coverage, facilitating
sustained, long-range operations. The cooperative routing of
such multi-agent systems is complex due to its combinatorial
nature, making the problem computationally intensive to
solve with exact methods. Thus, the use of suitable heuristics
becomes crucial for quickly attaining high-quality solutions.

A. Related works

Fuel constrained UAV routing has drawn significant research
attention, with numerous studies focusing on routes involving
multiple UAVs recharging at fixed depots. For instance,
Levy et al. [5] used variable neighborhood descent (VND)
and search heuristics (VNS) to discover viable solutions for

1Md Safwan Mondal, Subramanian Ramasamy and Pranav A. Bhounsule
are with the Department of Mechanical and Industrial Engineering,
University of Illinois Chicago, IL, 60607 USA. mmonda4@uic.edu,
sramas21@uic.edu, pranav@uic.edu 2James D. Humann
is with DEVCOM Army Research Laboratory, Los Angeles, CA,
90094 USA.james.d.humann.civ@army.mil 3Jean-Paul F.
Reddinger, James M. Dotterweich, Marshal A. Childers are with DEVCOM
Army Research Laboratory, Aberdeen Proving Grounds, Aberdeen, MD
21005 USA. jean-paul.f.reddinger.civ@army.mil,
james.m.dotterweich.civ@army.mil,
marshal.a.childers.civ@army.mil

*This work was supported by ARO grant W911NF-14-S-003.

large-scale scenarios. Sundar et al. [6] devised a mixed-
integer linear programming (MILP) model solvable with
readily available MILP solvers. Conversely, Maini et al. [7]
considered a UAV-UGV system where the UGV acted as
a moving recharging station for the UAV and they devised
a greedy heuristic to identify UAV recharging points along
the UGV’s route. Manyam et al. [8] explored the coopera-
tive routing problem of a UAV-UGV team, accounting for
communication constraints. They modeled the issue as an
MILP and introduced a branch-and-cut algorithm for optimal
problem-solving.

Researchers extended the UAV-UGV cooperative vehicle
routing problem by solving it in a tiered two-echelon ap-
proach. To solve the two-echelon cooperative routing prob-
lem, Luo et al. [9] proposed a binary integer programming
model with two heuristics. Liu et al. [10] developed a two-
stage routing framework for optimizing the main route of
a truck and the associated flight routes of a drone in a
parcel delivery system. They devised a hybrid heuristic that
combined nearest neighbor and cost-cutting strategies for
rapid solution development. In our previous works [11], [12],
we investigated a hierarchical bi-level optimization frame-
work for the cooperative routing of multiple fuel-limited
UAVs and a single UGV. The framework employed K-means
clustering to generate UGV visit points and used the traveling
salesman problem (TSP) to connect these points and create
the UGV route. A vehicle routing problem was then formu-
lated and solved for the UAV based on capacity constraints,
time windows, and missed visits. We extended this work
[13] to demonstrate that the quality of solutions could be
significantly improved by optimizing heuristic parameters
using Genetic Algorithm (GA) and Bayesian Optimization
(BO) methods. However, the prior framework was scenario-
specific, making generalization difficult, prompting this study
to develop a more robust and generalized optimization frame-
work that can be quickly solved online, making it suitable
for practical hardware implementation.

On the experimental front, few significant works have been
done to demonstrate routing of UAVs in indoor environ-
ments. Nigam et al. [13]–[15] investigated for high-level
scalable control techniques for unmanned aerial vehicles
(UAVs) for performing persistent surveillance in an uncertain
stochastic environment in a hardware testbed. Two UAVs
were used by Frew et al. [16] to demonstrate road following,
obstacle avoidance, and convoy protection in a fligt testing,
while Jodeh et al. [17] provided an overview of cooperative
control algorithms of heterogeneous UAVs by the Air Force
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(a) given mission scenario with MSC
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Fig. 1: Minimum set cover algorithm and task allocation technique a) Given mission scenario with minimum set cover algorithm. Blue
circle indicates radial coverage of UAV. Here, 3 refuel stops (including starting depot) can cover entire mission b) First subproblem
where UGV moves from starting depot to refuel stop 1 and UAV missions points within radial coverage are assigned. c) Second
subproblem where UGV moves from refuel stop 1 to refuel stop 2 and UAV missions points within radial coverage are assigned.

Research Laboratories (AFRL). Leahy et al. [18], [19] ex-
perimentally validated their proposed method for automating
persistent surveillance missions involving multiple vehicles.
Automata-based techniques were used to generate collision-
free motion plans and vector fields were created for use
with a differential flatness-based controller, allowing vehicle
flight and deployment to be fully automated according to
the motion plans. They used charging platforms for the
UAVs for truly persistent missions. Boeing’s Vehicle Swarm
Technology Laboratory (VSTL) [15], [20]–[22] and MIT’s
RAVEN laboratory [23] testbed have conducted significant
UAV flight testing demonstrations in indoor lab scale setups.

In this paper, we introduce a bi-level optimization frame-
work for solving the fuel-constrained UAV-UGV cooperative
routing problem that optimizes the operational time and
fuel consumption of both vehicles. Our proposed framework
leverages a minimum set cover algorithm and task allocation
method, enhancing the efficiency of the cooperative multi-
agent system and addressing fuel and speed constraints. To
validate our proposed algorithm, we conducted hardware
testing on a laboratory testbed that provides practical insights
into the real-world application and feasibility of our proposed
approach. To this end, we present following novel contribu-
tions: 1) The overall framework uses bilevel optimization
with task allocation technique for mission allocation and
constraint programming based routing solvers. 2) The task
allocation technique based on minimum set cover algorithm
divides the entire problem into decoupled subproblems which
radically simplifies the overall problem. 3) A constraint
programming-based formulation for vehicle routing problem
with time windows, dropped visits, and fuel constraints
enables quick solutions of each subproblem. 4) Hardware
validation of our work demonstrates the practical feasibility
and real-world applicability of our proposed algorithms and
methods.

B. Problem Description

The aim of the problem is to perform a cooperative mission
that involves visiting a set of designated mission points (see

figure 1a) M = {m0,m1, ...,mn}, using either the UGV
road-based visit route τg or the UAV aerial flyover route
τa. The cost of travel between any two mission points is
defined as the time required to travel from one point to
another, tij = tj− ti. The UGV and UAV are heterogeneous
in nature, with the UAV having a higher velocity va > vg but
a lower fuel capacity compared to the UGV fa < fg . Unlike
UAV, the UGV is restricted to travel along the road network
only, and the fuel consumption rate of the UAV is a function
of its velocity, Pa = f(va). The UAV can be recharged by
the UGV at any refueling stop or at the starting depot, with
the recharging time dependent on the fuel level of the UAV.
The UGV is assumed to have an infinite fuel capacity due
to its larger fuel capacity compared to the UAV. With these
described assumptions, the objective is to find the quickest
route, τmin = τa ∪ τg for the UAV and UGV to visit all
mission points together, with the starting depot being both
the starting and ending point, while ensuring that the UAV
never runs out of fuel. To find the time-optimized route, the
following goals must be achieved:

a) Identification of suitable stop locations where UAV
will synchronize with UGV to get recharged to cover all
the mission points, i.e, Mr = {mr

0,m
r
1, ...,m

r
k}.

b) Determination of optimal times during the mission,
when UAV, UGV will meet at those refuel stops i.e,
tri ∀ mr

i ∈ Mr.
c) Determination of the optimal routes τa, τg for both

the UGV and UAV based on the refueling locations mr
i and

times tri .

2. OPTIMIZATION FRAMEWORK

For the UAV-UGV cooperative routing, we propose a bilevel
optimization framework. The framework is designed as a
two-level hierarchical structure, where at the higher level,
we determine the UGV route using the “UGV First, UAV
Second” heuristic method, which involves prioritizing the
UGV route and then constructing the UAV route based on
it. To ensure the feasibility of the cooperative route, it is
critical to locate suitable refueling sites Mr along the UGV



route. We employ a minimum set cover algorithm to identify
the best locations for refueling. Then the inner-level UAV
route is built based on the UGV route by dividing the entire
scenario into subproblems what can be solved by modeling
them as an energy constrained vehicle routing problem with
time windows (E-VRPTW).

A. Outer level: UGV route

Maini et al. [7] demonstrated that in order to establish a
viable cooperative route, it is necessary to ensure that at
least one refueling stop is located within the UAV fuel
coverage radius for each mission point. Thus to determine
the minimum number of refueling stops required to cover
the entire mission scenario, we can adopt the minimum set
cover algorithm (MSC). This is a well-established problem
that can be solved using a variety of methods, including
greedy heuristics [7]. However, in this study, we proposed a
constraint programming formulation for minimum set cover
algorithm. For the same scenario, we employed both greedy
method and constraint programming approach individually
to solve the minimum set cover problem where constraint
programming method outperformed greedy heuristics.

1) Greedy heuristics method
Using a greedy heuristic approach can help to reduce the

complexity of the minimum set cover problem. Beginning
with a set of mission points M that require coverage and
considering the UAV’s fuel capacity fa as key inputs, the
objective is to ascertain the smallest possible subset Mr of
M that can act as refueling stops, to ensure coverage of the
entire mission scenario. The greedy algorithm (see algorithm
1) selects the initial depot point m0 as the first refueling stop
mr

0 (line 1) and then sequentially adds the mission points that
cover the greatest number of other uncovered mission points
to the refueling stop set (line 4-8) Mr until all points are
covered.

Although the greedy heuristic can produce an optimal
or near optimal result for a minimum set cover problem
quickly, there is possibility of multiple optimal solutions
for a given scenario. Since we are implementing a bilevel
optimization framework, it is essential to consider all the
other best solutions of the outer level algorithm. As it is not
possible to acquire all optimal solutions using the greedy
heuristic, we employed the constraint programming method.
This approach can rapidly generate multiple optimal results,
if present. Also, the greedy method may result into locally
optimal solution which can be overcome through an alternate
constraint programming formulation of the minimum set
cover problem.

2) Constraint programming method
Determining the minimum number of refueling stops

Mr needed to cover the entire mission scenario M can
be modeled using linear integer programming and solved
via constraint programming method (CP method). With the
binary decision variables in Eq. 2.5, xj signifying if a
mission point is chosen as a refueling stop, and yij indicating
whether a mission point mi is allocated to a refueling stop
mr

j , the objective function in Eq. 2.1 minimizes the number

Algorithm 1 Greedy Minimum Set Cover Algorithm
Input: Mission scenario points M, UAV fuel limit fa, starting

depot m0;
Output: Refueling stops Mr;

1: Initialize Mr = {mr
0 = m0}, Targets = T = M;

2: C0 = Covered(mr
0) = {mi : mi ∈ T and ∥mi − mr

0∥ <
0.5fa};

3: T = T \ C0;
4: while T ≠ ∅ do
5: mr

imax = argmax Covered(mi);
6: Mr = Mr ∪ {mr

imax};
7: Cmax = {mi : mi ∈ T and ∥mi −mr

imax∥ < 0.5fa};
8: T = T \ Cmax;
9: end while

of refueling stops. The constraint in Eq. 2.2 ensures that
each mission point mi has at least one refueling stop mr

j

assigned to it. The constraint in Eq. 2.3 guarantees that a
mission point mi can be allocated to a refueling stop mr

j

only if that refueling stop is selected. The constraint in Eq.
2.4 ensures a mission point mi is only assigned to a refueling
stop mr

j within the UAV’s fuel coverage radius, facilitating
a round trip for the UAV from the refueling stop.

Objective: min
∑

mr
j∈Mr

xj (2.1)

Subject to, ∑
mr

j∈Mr

yij ≥ 1, ∀ mi ∈ M (2.2)

yij ≤ xj , ∀ mi ∈ M and ∀ mr
j ∈ Mr (2.3)

yij = 0, if dij > 0.5fa, ∀ mi ∈ M and ∀ mr
j ∈ Mr (2.4)

yij , xj ∈ {0, 1} (2.5)
We utilized Google’s OR-Tools™ CP-SAT solver [24]

to solve this linear integer formulation, and it can record
multiple optimal solutions if they exist. After identifying
the refueling stop locations, a UGV route can be created by
connecting these stops on the road network. We can solve
a simple travelling salesman problem (TSP) considering the
refueling stops to determine an optimal UGV route. Once
the optimal UGV route is established, we can proceed to the
inner loop UAV routing.

B. Inner level: UAV route

At the inner level of our framework, we employed a task
allocation technique to divide the entire mission scenario into
independent subproblems which were solved individually as
an energy constrained vehicle routing problems with time
windows (E-VRPTW).

1) Task allocation technique
Given the scenario and the obtained UGV route from outer

loop MSC algorithm, we can divide the entire problem into
n − 1 number of subproblems (n = number of refuel stops
with starting depot) with an assumption that UGV travels
only between two refuel stops in each subproblem. Before
the subproblem division, each mission point is assigned to
its nearest refuel stop (including starting depot) that covers
it. In the subproblems, the first refuel stop is the origin



node and the second refuel stop is the destination node of
UGV route. The sub-problems are decoupled from each other
by allocating separate mission points in them. The UAV
mission points covered by destination refuel stop under each
subproblem are allocated to that subproblem. Only, for the
first subproblem the mission points covered by both origin
and destination node should be allocated to it.

Figure 1 demonstrates the process of subproblem division
and mission allocation. Figure 1a shows refuel stop locations
obtained from outer level MSC algorithm for a given sce-
nario. The first subproblem (figure 1b) is created by taking
the starting depot as the origin node and the refuel stop 1
as the destination node. The UAV mission points covered
by origin node (starting depot) and destination node (refuel
stop 1) are assigned for subproblem 1. Similarly, the second
subproblem (figure 1c) is created by taking the refuel stop
1 as origin node and refuel stop 2 as destination node and
the mission points covered by the destination node (refuel
stop 2) are assigned for this subproblem. Once we get an
independent set of subproblems through task allocation, we
try to solve each subproblem by modeling it as energy
constrained vehicle routing problem with time windows (E-
VRPTW).

2) E-VRPTW model
The formulation of the E-VRPTW can be described with

the graph theory. Consider an undirected graph G = (V,E)
where V is the set of vertices V = {S, 0, 1, 2, ...D} and
E is the set of edges between the vertices i and j as
E = {(i, j) ∥ i, j ∈ V, i ̸= j}. The non-negative arc cost
between the vertices i and j is expressed as tij (traversal
time) and xij is a binary decision variable whose value will
be 1 if a vehicle travels from i to j, and 0 otherwise. From
the starting depot S, the UAV will take off and meet the
UGV at destination depot D which also has a time window
constraint because of slower speed of UGV. The objective
function of the E-VRPTW problem is indicated by Eq. 2.6
which minimizes the total travel time. Formulation of the
energy and time-window constraints are done in Eq. 2.7-2.11.
The details explanation of other generic VRP constraints are
discussed in our previous work [25].

Objective: min
∑
i

∑
j

tijxij ∀i, j ∈ V (2.6)

Energy constraints:
fa
j = fa, j ∈ D (2.7)

0 ≤ fa
j ≤ fa, ∀j ∈ V \ {S,D} (2.8)

fa
j ≤ fa

i − (Pa(va)tijxij)

+ L1 (1− xij) , ∀i ∈ V, j ∈ V \ {S,D} (2.9)
Time window constraints:

tj,start ≤ tj ≤ tj,end, ∀j ∈ D (2.10)

tj ≥ ti + (tijxij)− L2 (1− xij) , ∀i ∈ V, j ∈ V (2.11)
Eq. 2.7 says that UAV is fully recharged at the destination

depot, whereas fuel level is between 0 and maximum capac-
ity at any other vertex (Eq. 2.8). Eq. 2.9 employs the Miller-
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Fig. 2: UAV & UGV trajectory obtained from bilevel op-
timization with Greedy and CP method at the outer loop.
Numerical and alphabetical order shows the UAV and UGV
motion respectively. a) CP method based trajectory b) greedy
method based trajectory.

Tucker-Zemlin (MTZ) formulation for subtour elimination
while ensuring that during the removal of sub-tours UAV’s
fuel level is never completely drained. The time window
constraint for destination node is put in Eq. 2.10 while Eq.
2.11 makes sure that the cumulative arrival time at jth node
is equal to the sum of cumulative time at the node i, ti and
the travel time between them tij . Again, we used Google
OR-Tools ™ for our heuristic implementation for solving
the E-VRPTW model with constraint programming (CP).

3. RESULTS

Figure 2 provides an illustrative example of the input and
output of the problem at hand. The input, depicted in Figure
2, consists of mission points denoted by black crosses. The
UAV and UGV must both initiate and terminate at the starting
depot, while ensuring that all mission points are covered
either by the UAV or UGV. The UAV can recharge at the
depot or at designated refueling sites from the UGV. The
UAV and UGV have fixed velocities of 10 m/s and 4 m/s,
respectively, and their fuel capacities are 287.7 kJ and 25.01
MJ, respectively.

To carry out the optimizations, we employed Python 3 and
OR Tools ™ library, which ran on a 3.7 GHz Intel Core i9
processor with 48 GB RAM on a 64-bit operating system.
For the scenario, two types of cooperative routes (if different)
were generated by implementing the Greedy method and the



TABLE I: Impact of the optimal solution of the cooperative
routing.

Metrics Cooperative route UGV only route Improvement (%)

CP
method

Greedy
method

CP
method

Greedy
method

Time
consumption
(min.)

200 272 233 14.16 -16.74

Energy
consumption
(MJ)

21.98 21.14 34.69 36.62 39.06

CP method at the outer loop of the suggested framework. The
UGV-only route, where only a UGV completes the whole
mission was also determined for the scenario. Based on the
metrics of total mission completion time and total energy
consumption, the impact of collaboration between the UAV
and UGV on mission execution was assessed by comparing
the cooperative route with the UGV only route which served
as the upper limit.

Table I shows the improvement that was achieved through
cooperative routing of UAV-UGV on the mission scenario.
Cooperative routing is extremely energy efficient. Both CP
method and greedy method at the outer loop showed posi-
tive improvement reducing total energy consumption in the
mission by 36-39%. However, for total mission time greedy
method at the outer loop had a negative impact. This is
due to position of refuel stops (see trajectory in figure 2b)
what made the UAV to take frequent detours (6 times) for
recharging at the refuel sites elongating the total mission
time. However, appropriate refuel stop locations obtained
CP method (see trajectory in figure 2a) helped UAV to
complete its route with less recharging detour (4 times),
which effectively reduced total mission time.

Further insights about the trajectory of the cooperative
route can be drawn from Table II. As discussed earlier,
greedy results in longer UAV travel time which ultimately
costs higher mission time. Energy consumption of UGV is
low in greedy method as UAV is visiting majority of mission
points compare to CP method. In sum, both CP method and
greedy heuristics are capable of providing feasible coopera-
tive route for constrained complex mission scenario; however
CP method outperforms greedy method at the cost of some
computational efficiency.

4. EXPERIMENT DESIGN
The most stringent way of validating a framework is by hard-
ware demonstration. Hardware testing of our surveillance
planning framework was crucial given its complexity. We
utilized a small-scale lab scenario with a UAV and UGV
to test our proposed framework, aiming for full autonomy
where each robot independently locates, plans, and executes
its route, leveraging its sensing, processing, and communi-
cation capabilities. Developing this experimental system was
challenging due to the integration of software, hardware,
and communication. The individual elements of the hardware
architecture are detailed separately (see figure 3a) as follows:

1) Hardware: In our experiment, we used the DJI Tello
quadcopter as our UAV, a lightweight drone (80 g) with
basic flight stabilization and trajectory capabilities, which

TABLE II: Comparison between trajectories of CP method
and greedy heuristics

Metrics CP method Greedy method

Total time (min) 200 272

Computational time (min) 9 4

UGV results

Travel time (minutes) 200 272

Energy consumed (MJ) 20.79 19.52

Mission visited 22 18

UAV results

Travel time (minutes) 100 136.203

Energy consumed (kJ) 1186.464 1618.092

Recharging stops on UGV 3 6

Recharging stops on Depot 1 0

Missions visited 22 26

can also achieve higher autonomy via an external ground-
based computer using its telemetry and video feed.. Our
UGV was a Raspberry Pi controlled omnidirectional car with
a landing pad for UAV recharging.

2) Control & communication: A wireless 2.4 GHz
802.11n WiFi connection was used to communicate with the
drone. The approach makes use of the official Tello SDK
2.0. The UDP port is used to send text messages to the
drone programming interface. To create the application, we
used the SDK and the low-level Python library DJItelloPy.
Wireless wifi communication was also established with the
Raspberry Pi for controlling the UGV.

3) Central manager: The final component of our system
is a centralized manager, which runs our proposed bi-level
optimization framework to generate routes for the UAV and
UGV based on the given scenario. It assigns tasks and mon-
itors progress via a motion capture system. The UGV and
the UAV relies on feedback control from the central system
for precise navigation and successful recharging landings on
the UGV.

4) Experiment scenario: The experiments were con-
ducted in the Robotics and Motion Lab at the University
of Illinois Chicago. The lab has a designated flight area
equipped with a motion capture system that serves as a
reference for the position of reflective markers placed on
the quadrotor and the ground vehicle. This enables real-
time localization of the robots during the experiment. The
positional data of the vehicles can be obtained at a rate of
100 Hz, with a latency of less than 9 ms. A mission scenario
was created by selecting 12 different points over an area of
4m × 4m for the UAV, a road network was designed for
UGV and a fuel constraint was introduced by limiting the
UAV’s flight time in a single recharge (endurance limit). For
this experimental setup the endurance limit was setup to be
50 seconds, the UAV and UGV speed was 0.20 ms−1 and
0.15 ms−1 respectively. This required the UAV to visit the
UGV at regular intervals for recharging in order to complete
the mission. However no real recharging took place, it was
only hypothesized that UAV got recharged instantly when
it landed on the UGV. The UGV road network was also
designed to be challenging, with the farthest points on the
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Fig. 3: a) Hardware architecture b) & c) Comparison between simulation and experimental results. In the trajectory, the alphabetical
order represents the direction of motion of the UAV
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Fig. 4: Experiment instances a) UAV, UGV are moving towards their designated locations b) UAV landed on UGV for recharging.

mission requiring the UAV to operate near its maximum
endurance limit, thus testing the robustness of the proposed
framework.

A. Flight test results

Multiple trials of the experiment were carried out on the
scenario. The algorithm was fed with the locations of the
mission points and the road network points as input. The
outer-loop of the algorithm determined the UGV traversal
path with refueling spots in space and time, while the inner-
loop of the framework generated the UAV route. Both the
routes were provided to the individual agents from the central
manager, and the agents started performing their missions.
The purpose of the experiment was to verify the feasibility
of the algorithm’s output and to determine if the multi-
agent experiment could be successfully carried out with our
experimental architecture. The motion capture system was
used to track the positional data of the UAV and UGV,
which was processed to produce the experimental route.
The figure 3b shows a comparison between the simulation
route and the experimental route. During the experiment,
due to dynamics, the UAV drifted away in some places but
successfully managed to visit the mission points and get
recharged from the UGV by landing on it, because of the
feedback control. The endurance limit constraint was also
tested, and it was observed that the maximum flight time in
a single recharge was always below the maximum limit in

figure 3c. Dynamics of the UAV played an important role
in the experiment which was compensated by considering
buffer time period in the modeling of take off and landing
of the UAV in the simulation counterpart. Instances of the
flight test can be seen in figure 4.

5. CONCLUSIONS

We conclude that that a bilevel optimization framework,
combined with strategically devised heuristics, offers an ef-
fective strategy for addressing multi-agent cooperative rout-
ing challenges. Our heuristics method begins by determining
the UGV route through the application of the minimum set
cover algorithm and traveling salesman problem, followed by
establishing the UAV route based on mission allocation and
a vehicle routing scheme. We found constraint programming
outperformed greedy heuristics to solve the minimum set
cover algorithm at the expense of increased computational
time. Furthermore, through task allocation the entire problem
is segmented into smaller subproblems that can be solved in
real time to provide a partial route for immediate execution
while, the remaining trajectory is simultaneously resolved,
thereby facilitating online computation. The effectiveness of
our proposed multi-agent methodology is further validated
by an experimental evaluation on a small testbed, which
demonstrated a strong congruence between simulation and
actual hardware results.
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