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ABSTRACT
Simulation-based controllers are relatively easy to build and

evaluate, but rarely transfer seamlessly to hardware. This is
because of the reality-gap which is the discrepancy between sim-
ulations and hardware. Narrowing the reality-gap can speed
up the deployment of simulated controllers to hardware, also
known as sim-to-real. This paper presents sim-to-real transfer
of controllers on a single leg hopping robot, a system that cycles
between under-actuation during the stance phase to no-actuation
during flight phase. Using simulations, we design a controller to
achieve speed and height regulation once-per-step, but the con-
troller cannot achieve accurate control on hardware. Using data
from hardware, we model the mis-match between simulation and
hardware using Gaussian Process Regression (GPR), recompute
the controller, and redeploy it in hardware. It takes about 4 iter-
ations to achieve accurate tracking. The results show that when
GPR is used to model the step-to-step level model inaccuracy, it
can lead to high accuracy sim-to-real transfer while maintaining
sample efficiency. A video is here: tiny.cc/ idetc2023
Keywords: Legged Robots, Gaussian Process, Sim-to-Real,
Poincaré Map

1. INTRODUCTION
To accelerate the development of robotic applications in the

real world, it is important to use a simulation-based methodology
to develop controllers. Indeed, simulations are computationally
cheap (e.g., take a fraction of the time to set up and run), can be
fully automated (e.g., running test cases without supervision), and
inexpensive (e.g., robots don’t break in simulation) as compared
to hardware. This allows one to test various controller ideas,
refine them, and tune them on simulation before being deployed
on hardware. However, even the best simulators have limitations.
For example, it is difficult to model friction, mass, inertia, defor-
mations, noise, etc., with high accuracy leading to the reality gap
– differences between hardware and simulation. It is important
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to close this gap to enable seamless deployment of simulation-
based controllers to hardware, also known as sim-to-real transfer.
This work presents a technique for sim-to-real transfer by model-
ing the discrepancy between simulation and hardware and tuning
the controller based on the improved model. In particular, we
demonstrate the efficacy of the approach on a single leg hopping
robot.

2. BACKGROUND AND RELATED WORK
A single leg robot that can move by hopping is a good sys-

tem for testing and benchmarking because the system is simple
enough to model, yet offers significant control challenges that
must be overcome to achieve accurate step-step control. One of
the most challenging aspect of the hopping system is that it is
under-actuated (less actuators than degrees of freedom) when the
foot is in contact with the ground and un-actuated (no control) in
the flight phase. Hence, to enable stable hopping the controller
needs to provide accurate intra-step control and predict the future
inter-step control, beginning at the start of the next contact phase,
based solely on the state at the end of the preceding contact phase
with limited data pertaining to encompassed flight phase.

The earliest hopping robot was built by Raibert [1], who
showed that simple speed and height regulation by foot placement
control, in the flight phase, and torque control, in the stance phase,
can achieve stable hopping from step-to-step. Raibert’s method
of control may be formalized by using Poincaré sectioning and
mapping [2]. The Poincaré section is the states at an instant in
the locomotion cycle (e.g., apex for the hopper) and the Poincaré
map is a function that maps the states from one Poincaré section
to the next. The linearization over the Poincaré map may be used
to quantify the stability of the hopping gait. The Poincaré map
approach has been widely used for the control of hopping robot
(for example, [3], [4], [5]).

Sim-to-real transfer has gained increased attention in recent
years. Dynamic randomization has become a popular approach
to achieve efficient sim-to-real transfer [6, 7]. The control policy
(usually a neural network) is trained by randomizing the features
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of the simulation (mass, inertia, friction, latency, etc.). The
expectation is that the resulting control policy is robust towards
variability and, hence, has a higher chance of succeeding on
hardware. Such an approach is computationally demanding and,
therefore, not scalable. The scalability issue has been overcome,
to some extent, by seeding the learning with samples from motion
capture [8] or training in a lower dimensional space, such as in
the cartesian space [9]. Another approach is to use experimental
data to improve sub-system model (e.g., actuator dynamics [10]).

Control improvements may also be achieved directly in hard-
ware by using sample-efficient optimization such as Bayesian
Optimization [11]. Here, the cost function (e.g., speed, energy)
is mapped to parameters of the control policy using a Gaussian
Process Regression (GPR). During training on hardware, the con-
trol policy parameters are directly optimized using an acquisition
function, such as the probability of improvement, predicted im-
provement, and confidence bounds. However, GPRs do not scale
well with the input space (control parameters, in this case) and
data points. The first issue may be fixed by using latent space
representations that map high dimensional inputs to low dimen-
sional space for the GPRs [12, 13] and the second issue may be
addressed by using sparse GPR [14]. Another approach is to use
GPR to model the system dynamics and then use the GPR for
control [15]

In this paper, we take a different approach. Instead of learn-
ing a control policy in hardware using GPR, we learn an error
correction between the simulation-based model and the physical
hardware using GPR. This approach has been used for bongo
board balance [16], control of a blimp [17], control of a quad-
copter [18], and control of unmanned ground vehicles [19]. The
trained model is then used to develop an improved controller us-
ing existing methods (e.g., model-based control), which provides
an increased correlation between the simulation-based and phys-
ical models over the original, purely simulation-based, model. In
the past approaches, the corrected model is estimated over the
time domain (typically 20 - 200 Hz). This leads to scalability
issues with GPRs. We exploit the Poincaré map representation,
which is a low-dimensional model, for control purposes. We use
the GPRs to learn a correction to the Poincaré map, estimated
over one or more steps (typically 2 Hz for slow systems like
walking and 10 Hz for fast systems like hopping), ensuring scal-
ability of the proposed approach. The novelty of this approach
is to use Poincaré-map-based model correction, using GPRs, to
ensure scalability of the approach and its demonstration on a
custom-built monoped hopping robot.

The paper is organized as follows. In Sec. 3 we provide
details of the physics-based model. In Sec. 4 we present the low-
level and the step-level controller. In Sec. 5, we present details of
the custom-built hardware. This is followed by Results in Sec. 6,
Discussion in Sec 7, and Conclusion and Future work in Sec. 8.

3. MODEL
Figure 1 shows the 2D model based on the custom-built hop-

ping robot. The hopper is confined to the sagittal plane using a
boom. The coordinates of the boom-hopping robot connection
are (𝑥,𝑦). The hopper leg consists of a 4-link, closed chain, mech-
anism. The links of the 4-link mechanism are symmetrical about

the mechanism vertical axis except for the protruding second link
(foot) on one side as denoted by ℓ3 in figure 1. Only two angles
are needed to define the kinematics of the chain. We define 𝛼1 as
the angle between the vertical and the line joining the boom axis
to the joint between bottom two links and 𝛼2 as half the angle
between the top two links.

The links are connected to each other and to the boom through
pin joints. The robot top links have length ℓ1 = 0.11 m and
bottom links have length ℓ2 = 0.2 m. The top links have mass
𝑚1 = 0.043 kg and inertia 𝐼1 = 0.0001 kg/m2 while the bottom
link have mass 𝑚2 = 0.047 kg and inertia 𝐼2 = 0.00025 kg/m2.
The center of mass of the top link is at a distance of 𝑐1 = 0.0485
m from the boom axis and the center of mass of the bottom link
is at a distance of 𝑐2 = 0.1054 m from the pin joint connecting
the top and bottom link. The foot protrusion of the second link
is ℓ3 = 0.045 m. Gravity is 𝑔 = 9.81 m/s2 and points vertically
downward. The mass of the hopping robot and the inertia of the
attached boom are 𝑀 = 1.466 kg and 𝐼 = 𝑑𝑖𝑎𝑔{𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧} where
𝐼𝑥 = 𝐼𝑧 = 5 kg/m2 and 𝐼𝑦 = 0.0015 kg/m2.

We use Euler-Lagrange equations to describe the movement
of the hopper. The hopper movement consists of a stance phase,
where we assume that the foot is in contact with the ground, and
a flight phase, where the hopper moves freely under the effects
of gravity and momentum. There are two phase transitions, the
collision transition, where the hopper transitions from a flight
phase to a stance phase, and the take-off transition, where the
hopper transitions from a stance phase to a flight phase. These
are described in detail next.

3.1 Stance phase equations
The state variables for derivation are defined as q =[︁

𝑥 𝑦 𝛼1 𝛼2
]︁𝑇 . The Lagrangian can be written as

L = T− V,

= 0.5(𝑀𝑣𝑇 𝑣 + 𝐼𝑥 �̇�2/𝑅 + 𝐼𝑧 �̇�2/𝑅 + 𝐼𝑦𝜔2) + ...∑︂(︃
𝑚𝑖𝑣

𝑇
𝑖 𝑣𝑖 + 𝐼𝑖𝜔2

𝑖

)︃
− 𝑀𝑔𝑦 −

∑︂(︃
𝑚𝑖𝑔𝑦𝑖

)︃
, (1)

where 𝑣𝑖 , 𝜔𝑖 , 𝑦𝑖 are the linear velocity, angular velocity, and
relative vertical position at the center of mass of link 𝑖 respectively
and boom length is 𝑅 = 1.854 m. We take the summation over the
4 links. Using the Euler-Lagrange equations gives 4 equations,

M(q)q̈ + N(q, q̇) = Bu + J𝑇P, (2)

where M, N, B are the mass matrix, accelerations due to Coriolis,
centrifugal acceleration and gravity, and torque selection matri-
ces. The control torques are u =

[︁
𝜏1 𝜏2

]︁𝑇 where 𝜏𝑖 is the torque
for the two top links, J is the Jacobian of the contact point with
respect to the degrees of freedom and P is the ground reaction
force on the stance leg.

The foot does not move during stance phase (nonslip as-
sumption). This can be computed by differentiating the position
of the contact points twice, 𝑥foot = 𝑦foot = 0 to give

Jq̈ = −J̇q̇. (3)
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FIGURE 1: 2D MODEL: (A) CONFIGURATION VARIABLES DESCRIBING THE DEGREES OF FREEDOM, (B) MASS, CENTER OF MASS, INERTIA
ABOUT CENTER OF MASS, AND LENGTH PARAMETERS, (C) HARDWARE

We can combine Eqns. 2 and 3 to get[︃
M(q) −J𝑇

J 0

]︃ [︃
q̈
P

]︃
=

[︃
−N(q, q̇) + Bu

−J̇q̇

]︃
. (4)

3.2 Flight phase equations
The swing phase equations are derived from the stance phase

equations by setting P = 0 in Eqn. 2 to get

M(q)q̈ + N(q, q̇) = Bu. (5)

3.3 Flight to stance phase transition
The transition from flight to stance phase occurs when the

foot makes contact with the ground. In simulation, this transition
occurs when 𝑦foot = 0. On hardware, due to deflection in the boom
arm, 𝑦foot = 0 is not a precise indicator of the flight-to-stance
state transition, and thus, on hardware, transition is considered to
have occurred when vertical ground reaction force P𝑦 exceeds a
threshold value.

During the transition, the position variables are assumed to
be the same while the velocity variables are assumed to change
based on the conservation of angular momentum about the stance
foot. We obtain the velocity during transition by integrating Eqn 2
and taking the limit as time goes to 0 to yield

M(q−) (q̇+ − q̇−) = J𝑇P𝑡 , (6)

where the superscripts − and + indicate instants before and after
collision and P𝑡 is the impulse on the stance foot. The foot comes
to rest after the collision. This is give by �̇�+foot = 0 to get

Jq̇+ = 0. (7)

We can combine Eqns. 6 and 7 to get[︃
M(q−) −J𝑇

J 0

]︃ [︃
q̇+

P𝑡

]︃
=

[︃
M(q−)q̇−

0

]︃
. (8)

3.4 Stance to flight phase transition
On simulation, the stance to flight phase transition occurs

when the vertical ground reaction force P𝑦 = 0. This reaction
force is obtained from P in Eqn. 4. On hardware, due to physical
limitations, the stance-to-flight transition is considered to have
occurred when the 4-link leg member has extended to the safe
maximum value, since relying on ground reaction force would
lead to a collision of the 4-link member links. During the tran-
sition from stance to flight phase the positions and velocities are
assumed to remain the same.

4. CONTROLLER
4.1 Low-level controller

The low-level controller runs at 1 kHz. The controller takes
in sensor data, the angles and rates, and outputs joint torque
torques to the two servo drives. There are separate controllers for
the stance and the flight phase.

Flight Phase controller: The flight phase controller uses a
position-derivative controller to set the joint angles. In the flight
phase we input a desired leg length ℓdes and leg orientation 𝜃des.
There is a kinematic mapping

[︁
ℓ, 𝜃

]︁
= f (𝛼1, 𝛼2). We are able to

analytically invert f to compute the desired angles (𝛼1, 𝛼2)des =

f−1 (ℓdes, 𝜃des). The feedback controller can then be written as
𝜏 =

[︁
𝜏1 𝜏2

]︁
= −K𝑝 (𝛼 − 𝛼des) −K𝑑 (�̇� − �̇�des), where K𝑝 and K𝑑

are the proportional and damping gain respectively. There is a
feedback control on the desired landing angle, 𝜃des = 𝐾1 (�̇� − �̇�des),
where 𝐾1 and �̇�des are the proportionality gain and the desired
speed respectively.

Stance Phase controller: The stance phase controller regulates
the force in the leg. The leg is simulated to contain a virtual
spring. The leg force is 𝐹 = −𝐾2 (ℓ − ℓ0), where 𝐾2 and ℓ0
are the user specified stiffness and the rest length of the virtual
spring, respectively. The force is then resolved in the x- and y-
direction as follows 𝐹𝑥 = 𝐹 cos(𝛼1) and 𝐹𝑦 = 𝐹 sin(𝛼1). Using
the Jacobian J from the toe to the joints, we compute the desired
torques, 𝜏 =

[︁
𝜏1 𝜏2

]︁
= J𝑇

[︁
𝐹𝑥 𝐹𝑦

]︁
.
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FIGURE 2: POINCARÉ MAP AND SECTION

4.2 High-level (Step-level) controller
Our goal is to track a desired apex horizontal speed �̇�des and

desired apex height 𝑦des. This is achieved using a step-level,
Poincaré map based, control. The step-level control attempts to
regulate the speed and height once per step, hence the name. We
describe the Poincaré map/section that is used as a model for the
step-level controller below.

Poincaré section and map: Figure 2 shows pictorial depiction
of the Poincaré section and map [2]. Consider an instant in the
gait cycle (e.g., instant when the hopper is the apex). This is
the Poincaré section. Let the reduced state (which is a subset of
the complete state) at the Poincaré section in the current step be
X𝑖 . This is shown with the red diamond. Our low-level control
parameterization chooses the control U𝑖 (e.g., amplitude, gain,
set-point), which takes the reduced state to X𝑖+1 at the Poincaré
section in the next step. There is a function P, known as the
Poincaré map, that maps the reduced state from one step to the
next. This is given by:

X𝑖+1 = P(X𝑖 ,U𝑖). (9)

Note that the control U𝑖 is set once per step and kept constant
during the step. We can also find a state-control pair (X0,U0)
that would repeat itself at the next step, X0 = P(X0,U0). This
state, X0, is known as the fixed point and it gives rise to a periodic
gait known as the limit cycle.

For the hopper we choose the Poincaré map at the apex where
�̇�𝑖 = 0 and X𝑖 =

[︁
�̇�𝑖 𝑦𝑖

]︁
and U𝑖 =

[︁
𝑓 𝑥𝑖 𝑓 𝑦𝑖

]︁
where 𝑓 𝑥𝑖 and

𝑓 𝑦𝑖 are forces, constant for the entire stance phase, added to the
stance level controller (described in Sec. 4.1) after the mid-stance
phase (when �̇� > 0).

Thus, we have[︁
�̇�𝑖+1 𝑦𝑖+1

]︁
= P(

[︁
�̇�𝑖 𝑦𝑖 𝑓 𝑥𝑖 𝑓 𝑦𝑖

]︁
). (10)

Unfortunately, there is no analytical solution to the Poincaré
map, P. We use numerical integration to determine the state[︁
�̇�𝑖+1 𝑦𝑖+1

]︁
for the given inputs

[︁
�̇�𝑖 𝑦𝑖 𝑓 𝑥𝑖 𝑓 𝑦𝑖

]︁
.

4.3 Step-level control problem
The step-level control problem is stated as follows. Given

the state at the current step,
[︁
�̇�𝑖 𝑦𝑖

]︁
, compute the control at the

current step,
[︁
𝑓 𝑥𝑖 𝑓 𝑦𝑖

]︁
, such that the state at the next step is[︁

�̇�𝑖+1 𝑦𝑖+1
]︁
=
[︁
�̇�des 𝑦des

]︁
. From Eqn. 10 we can write[︁

�̇�des 𝑦des

]︁
= P(

[︁
�̇�𝑖 𝑦𝑖 𝑓 𝑥𝑖 𝑓 𝑦𝑖

]︁
). (11)

These are two nonlinear equations and two control variables 𝑓 𝑥𝑖
and 𝑓 𝑦𝑖 . These equations may be solved using a nonlinear root
finding algorithm, such as the MATLAB function fmincon, which
is utilized here.

4.4 Sim-to-real transfer
The controller derived from the purely simulation-based

Poincaré map, equation 11, leads to relatively poor tracking on
hardware. This is known as the reality gap [7]; simulation-based
controllers do not always work as intended on hardware. We use
a Gaussian Process Regression to update the Poincaré map as
follows [20].

For a given reference horizontal speed and height, we use the
simulation-based Poincaré map, equation 11, to compute a con-
trol. We store the state obtained on the hardware,

[︁
�̇� true
𝑖+1 𝑦true

𝑖+1
]︁
.

We then fit the error in the Poincaré map as follows:[︁
�̇� true
𝑖+1 𝑦true

𝑖+1
]︁
− P(

[︁
�̇�𝑖 𝑦𝑖 𝑓 𝑥𝑖 𝑓 𝑦𝑖

]︁
) = ...

𝐺𝑃(
[︁
�̇�𝑖 𝑦𝑖 𝑓 𝑥𝑖 𝑓 𝑦𝑖

]︁
). (12)

where 𝐺𝑃 is the Gaussian Process Regression model.
Then we re-compute the control using the improved Poincaré

map as follows[︁
�̇�des 𝑦des

]︁
= P(

[︁
�̇�𝑖 𝑦𝑖 𝑓 𝑥𝑖 𝑓 𝑦𝑖

]︁
) + ...

𝐺𝑃(
[︁
�̇�𝑖 𝑦𝑖 𝑓 𝑥𝑖 𝑓 𝑦𝑖

]︁
). (13)

This is solved using a root solving program fsolve in MATLAB.

5. HARDWARE PLATFORM
5.1 Overview

The hardware platform utilized in this work is shown in Fig.3.
The setup consists of a custom, two degree-of-freedom, portable
rotating boom with a boom-arm-attached monoped leg, linked
via EtherCAT network to a real-time linux server. The boom-
arm attached monoped leg is an, electrically driven, asymmetric
four-link mechanism that acts to convert two opposing torques
into linear force and torque. The drive section for the monoped
leg mechanism consist of oppositely-mounted T-motor U10plus
brushless DC motors with attached custom 14bit magnetic en-
coder modules, build around the IC Haus MHM encoder IC. The
closed torque control loops of the monoped drive section are
controlled within dual onboard Elmo Motion Control 80V/80A
servo drives. Mid-level interface is provided by a real time Linux
master terminal via a synchronous EtherCAT network operating
at a 4kHz.

5.2 Boom
The custom portable rotating boom is a platform that facil-

itates the controlled motion and observation of an experimental
package while constraining unwanted degrees of freedom. The
rotating boom utilized in this work has two unconstrained degrees
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FIGURE 3: HARDWARE SETUP

of freedom: about the vertical axis (oriented parallel to gravity)
and about a rotating horizontal axis (oriented perpendicular to the
vertical axis). The boom rotating axes are equipped with mechan-
ical encoders which offer a resolution of 0.072 and 0.022 degrees
in the horizontal and rotating vertical planes, respectively. Boom
encoder position computation and tracking are performed by on-
board Beckhoff EtherCAT terminals, operating synchronously
with the EtherCAT-network-linked Elmo servo drives. The ultra
high modulus carbon fiber boom arm, which couples the monoped
leg mechanism utilized in this work to the body of the portable
rotating boom, is adjustable in length from 1.85m to 2.75m. On-
board EtherCAT communication, high-voltage low-current sup-
ply (120Vac), and low-voltage high-current supply (36Vdc) are
provided via an electro-mechanical slip ring, allowing for infinite
and unobstructed rotation of the boom arm about the vertical axis
of the boom.

5.3 Control terminal and EtherCAT communication
High level command and control for both the monoped leg

mechanism and the rotating boom platform are performed on a
Dell Optiplex 9020 with an Intel i7 processor, operating Ubuntu
Linux with a real-time kernel. The EtherCAT network interface
adapter is 10Gtek network interface card (NIC) with an Intel
82574L chipset. EtherCAT network management and EtherCAT
network interfacing between the hardware and main state machine
are provided by the Acontis Technologies EtherCAT master stack.
The Acontis Technologies EtherCAT master stack is a collection
of libraries that provide link layer management between an NIC
and user software, allowing off-the-shelf network and computer
hardware to be utilized as an EtherCAT master terminal.

Through the use of the EC master stack libraries, the state
machine is able to synchronously access the torque, velocity and
position of each U10plus drive motor, as well as the angular posi-
tion of both the horizontal and vertical boom-mounted encoders.
As the torque control loop executes directly on the Elmo servo
drives, the only data passed to the servo drives, synchronously,

by the state machine is the reference torque command for each
servo drive. Due to the utilized real-time Linux kernel, the user
software (including the state machine) is able to execute signif-
icantly faster than on a non-rt system and, due to the use of
a multithreaded program architecture, numerous computational
operations are able to be performed between each successive
EtherCAT network cycle without blocking the operation of the
EtherCAT masterstack, providing for the ability to handle sub-
stantial computational problems in real time while the hardware
is in operation without blocking EtherCAT communication.

6. RESULTS
The simulation performed using MATLAB. We used the

function ode113 to integrate the equations of motion given by
Eqns 4, 5, and 8. The integrator has an in-built event detection
that helps to detect transitions. The Poincaré map (Eqn. 10) is
obtained by integrating the equations from one apex to the next.

We generated a reference profile for �̇�des and 𝑦des as shown
in Fig. 4 (solid blue line). Using the simulation-based Poincaré
map (Eqn. 10) and the MATLAB function fsolve, we generated a
controller as a lookup table. This was then executed on the robot.
This is shown in Fig. 4 (dash-dotted red line). It can be seen that
there is a significant tracking error for both, �̇� and 𝑦.

Next, we used the experimental data to fit the error in the
Poincaré map estimation using a Gaussian Process Regression
(Eqn. 12). We used the MATLAB function fitrgp with a constant
basis function and matern52 kernel. Then we used the corrected
Poincaré map to compute the control (see Eqn. 13). This was
tested on the hardware and the resulting data was use to improve
the estimate of the Gaussian Process. This process was repeated
3 more times, for a total of 4 training iterations and 4 hardware
deployments. The 4th iteration led to acceptable results. The
error in tracking using the 4th iteration GP is shown in Fig. 4
(dashed black line). It can be seen that the error has substantially
reduced compared to the simulation-based controller. Thus the
approach is shown to successfully improve the sim-to-real transfer
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FIGURE 4: COMPARING CONTROLLERS ON HARDWARE. CONTROLLER BASED ON SIMULATION-BASED POINCARÉ MAP (NO GP) VERSUS
CONTROLLER BASED ON LEARNT POINCARÉ MAP (WITH GP).
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FIGURE 5: AVERAGE MEAN SQUARED ERROR OF THE POINCARÉ
MAP CORRECTION VS ITERATION NUMBER.

using just 4 training iterations. A video comparing the controllers
with and without GPR is here: tiny.cc/idetc2023.

Figure 5 shows the progress in the training, the average mean
squared error (MSE) vs the iteration number for both the vari-
ables. It can be seen that the MSE converges in a mere 1 iteration
for velocity and about 3 iterations for apex height. Figure 6 and
7 gives more details about the mean/confidence interval for the
converged iteration (top) and the standard deviation over the first
and last converged iteration (bottom). From the top plots it can
be seen that that 95% confidence interval is narrow for both vari-
ables. From bottom figures it can be seen that initially (iteration
1), the standard deviation is the largest when there is a step change
in the reference. However, with more training (iteration 4), the
standard deviation at the step change decreases. In particular,
the maximum deviation in iteration 1 is about 0.03 m/s which
decreases to 0.02 m/s for velocity and from 0.015 m to under
0.01 m for apex height.

7. DISCUSSION
We presented a technique for sim-to-real transfer tracking

control of hopping robot. The technique consists of using a
physics-based model to numerically obtain the Poincaré map.
Then the map is iteratively improved by designing a controller
with the Poincaré map, collecting data from hardware, and fit-
ting a correction to the Poincaré map using Gaussian Process
Regression. This process is repeated till the Gaussian Process
Regression model converges, i.e., there is no improvement on
the mean square error. The converged estimate of the Poincaré

6 Copyright © 2023 by ASME
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map provides accurate tracking compared against the simulation
obtained Poincaré map.

The differences between the model and simulation were due
to boom dynamics (boom deflection during motion), ground vari-
ance, and mismatch in mass, center of mass, and inertia to some
extent. Some of these difference are best modeled as a bias (e.g.,
mass, inertia, center of mass), but others such as boom dynamics
and ground variance are best modeled as a bias and an uncer-
tainty. A Gaussian Process Regression (GPR) can effectively
model both, bias and uncertainty as a mean and standard devi-
ation respectively. The mis-modeled dynamics shows up as a
steady state error (a bias) in the tracking using the simulation-
based controller as shown in Fig. 4 (dash-dotted red line). The
boom dynamics have the biggest effect when the hopper changes
the reference speed and velocity. This can be seen in the rel-
atively large standard deviations during these step changes (see
Fig. 6 and 7).

Unlike past approaches which learn the control policy in
hardware, we learn the model mismatch. The advantage of learn-
ing the model mismatch (as opposed to the control) is that the
resulting model can be used in a novel scenario without taking
more experimental data. Also, past approaches learn the GPR for
model or control policy in the time domain. Since the GPR scales
as 𝑁3 where 𝑁 is the number of data points, time domain models
are challenging to scale. In contrast, we learn the GPR model at
the step-level where 𝑁 is step number, our GPR model can model
more data sets than using time-based parameterization.

There are several limitations of our approach. Unlike past
approaches that use neural networks for modeling, GPR provide
local approximations. However, it is possible to use neural net-
works or polynomials to approximate the Poincaré map [21]. For
the hopping system, there are only 4 independent variables for the
GPR (see Eqn. 12) which helps in scaling the approach. How-
ever, this may not be true for high-dimensional systems. In such
cases, one attractive option is to use a feature space to map the
Poincaré variable to a low-dimensional space for GPR (e.g., see
[12]). Finally, it is important to choose free parameters from
the low-level control that have appreciable effect on the states on
Poincaré map. There is, so far, no systematic way to find such
parameters but human intuition and trial-and-error [22, 23].

8. CONCLUSIONS AND FUTURE WORK
We conclude that Gaussian Process Regression (GPR) can

scale for sim-to-real transfer when used to model the correction
to the Poincaré map rather than the low-level physics. Our results
show that the convergence is fast (about 4 iterations). Thus, GPR
is promising method for sim-to-real transfer.

The future work will investigate GPR in situation where there
is added uncertainty (e.g., manipulate the ground profile) and the
use of model-based control framework for tracking of reference
signals.
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