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Abstract—This work aims to enhance the linear inverted
pendulum model (LIPM) for bipedal robot control. While the
LIPM simplifies the dynamics by assuming homogeneity, it
fails to capture important nonlinear dynamics observed in
real-world scenarios. To address this limitation, we propose
the non-homogeneous LIPM (NH-LIPM), which incorporates
a non-homogeneous term in the traditional LIPM dynamics.
The NH-LIPM is augmented with controllable inputs, allowing
for greater parameter control compared to the LIPM. Through
regression analysis and the use of the Recursive Least Squares
algorithm with forgetting, we extract and adaptively tune
the NH-LIPM parameters. Evaluation through high-fidelity
simulation and experimentation on a 30-degree-of-freedom
humanoid demonstrates that the NH-LIPM offers improved
velocity tracking control, particularly when ankle torque with
damping control is added. This model provides a flexible
framework for simultaneously controlling the center of mass
velocity and position, enabling precise reference tracking and
enhanced bipedal locomotion. A video is linked here: http:
//tiny.cc/NHLIPM

I. INTRODUCTION

Bipedal robots, such as Agility Robotics’s Digit, strive to
replicate human-like balance, walking control, and adaptabil-
ity. However, achieving robust walking capabilities for these
robots remains a significant challenge. Factors such as high
dimensionality, nonlinear dynamics, and under-actuation due
to limited ankle torques contribute to the complexity of
bipedal robot control.

In the field of bipedal robot control, two main approaches
have emerged. The first approach, the linear inverted pen-
dulum model (LIPM), uses a point mass model, ignoring
most of the nonlinearities, to develop controllers [1]. This
controller is then transferred to a full robot model using force
and/or position control. However, this approach overlooks
the influence of angular momentum and center of mass
differences, limiting its ability to capture the full dynamics
of the system. The second approach involves developing a
trajectory tracking controller using a full-order robot model
that behaves as a low-order model, typically through the
concept of hybrid zero dynamics [2]. This approach faces
challenges when the system deviates significantly from the
reference trajectory, leading to stabilization difficulties.

In this study, we propose an approach that leverages
the strengths of both approaches. We employ tight inverse
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kinematics trajectory tracking on the feet and an inverse-
dynamics-based torso orientation control such that the dy-
namics of the center of mass (COM) of the robot are
predictable. We then use the LIPM as the base function of
the Step-to-Step (S2S) dynamics. The S2S dynamics refer to
the time-evolving behavior and state transition of the system
within the time-scale of a step. The LIPM exhibits modeling
inaccuracies that contribute to errors in the S2S control of
the robot. To mitigate such errors, we propose adding a non-
homogeneous equation to the homogeneous LIPM dynamics
producing the non-homogeneous linear inverted pendulum
model (NH-LIPM). Two methods are used to extract the
solution to the non-homogeneous equation. The first is by
extracting an analytical polynomial regression on the LIPM
S28S error, and the other is utilizing the recursive least squares
(RLS) algorithm to adaptively find the optimal parameters
of the non-homogeneous equation. The main contributions
of this research are the 1. data-derived formulation of the
particular solution of the NH-LIPM to reduce the modeling
error displayed in the homogeneous LIPM, 2. capturing the
effects of forced inputs on the NH-LIPM to develop the F-
NH-LIPM and using the new model for multi-input control
and 3. utilizing the RLS algorithm to iteratively adapt the
coefficients of the particular solution in real time.

II. BACKGROUND AND RELATED WORK

The control of bipedal robots poses significant challenges
due to their high degree of freedom and underactuation at
the ankle joint. Achieving stability in bipedal locomotion
often relies on orbital stability, where control is achieved
at the time-scale of each step [3]. Passive dynamic walkers,
for example, demonstrate orbital stability by utilizing natural
dynamics to walk stably down slopes [4][5]. Actuators can
be employed to achieve similar behavior on level ground by
replacing gravitational energy with joint torques [6]. Stability
evaluation of such cyclic systems can be performed using
a S2S map or Poincaré map, which relates states at one
instance of the cycle to the same state in the next cycle
[7]. Stability analysis based on eigenvalue analysis of the
map helps determine the stability of the system and design
control strategies to achieve desired stable eigenvalues [8].

Hybrid zero dynamics is an alternative method for achiev-
ing S2S stability by utilizing virtual constraints that track
controlled degrees of freedom as a function of uncontrolled
degrees of freedom [9], [10]. Although this reduces the
dimensionality of the Poincaré map, it does not guarantee
S2S stability. Various methods, such as finding controls
with eigenvalues less than 1, modifying virtual constraints,



or introducing event-based stabilization, can be employed
to achieve S2S stability [11]. However, linearized stability
achieved through these methods may be compromised in the
presence of significant perturbations.

To simplify control and develop orbitally stable con-
trollers, several simple models have been proposed, such
as the Linear Inverted Pendulum Model (LIPM) for walk-
ing and the Spring-Loaded Inverted Pendulum Model for
running [12][13][14]. These models provide insights into
the dynamics and appropriate foot placement for achieving
desired walking velocities. However, limitations arise from
modeling errors due to nonlinearities that are not captured
by these simplified models [14].

Previous studies have explored enhancements to the LIPM
by incorporating time-varying dynamics and forcing func-
tions derived from ankle torque inputs. For example, an
angular momentum-based LIP (ALIP) model with a forcing
function was developed to simulate walking over dynamic
surfaces [15]. In our previous work, polynomial regression
analysis was employed to extract an analytical S2S map of
the COM position and velocity, improving dynamic predic-
tions and velocity tracking in 2D simulations [14]. This study
expands upon the previous work by extending it to the 3D
case. This study introduces the concept of a NH-LIPM that
captures the time and state dependency of the dynamics.
It incorporates forcing functions derived from ankle torque
inputs, enabling further control enhancement.

Other research efforts have explored adaptive control ap-
proaches to address model mismatches and improve control
robustness [16]. These include using neural networks for
adaptive control and developing adaptive virtual models to
respond to parameter variations and external disturbances
[17]. However, these approaches focus on adaptation at the
controller level and may not yield significant improvements
in forward speed control or continuous dynamics in the x-
axis.

In this study, we propose the use of the recursive least
squares algorithm with forgetting to adaptively tune the
parameters of the discrete NH-LIPM S2S model in real-time
for forward and lateral walking. The forgetting factor in the
controller allows us to select a model that adapts quickly
to changes or at a slower rate, retaining the memory of
previously sampled data.

A. Robot model III. MODELS

Digit is an advanced bipedal robot with impressive capa-
bilities. It has 30 degrees of freedom and features 20 actuated
joints, as illustrated in Figure 1 (refer to [18] for more
comprehensive information on Digit). The design of Digit’s
legs draws inspiration from its predecessor, Cassie [19],
but incorporates notable enhancements. These enhancements
include the addition of a roll joint at the toe and the inclusion
of an upper body comprising of a torso and two arms.

To understand the leg kinematics of Digit, we can visualize
it as two interconnected closed-loop chains. These chains are
represented by distance constraints between the heel spring
and the hip pitch joints. During the swing leg phase, for the

sake of simplicity, the knee and tarsus joint positions are
inversely coupled as explained in [14].

B. Step-to-step (S2S) Models

The general form of the S2S models developed in this
study is illustrated in [20] and the general S2S map is shown
in Eqn. (1). During the initiation of the single support phase
(SSP), the COM position and velocity relative to the stance
foot are denoted as x,, and v, , respectively, where k repre-
sents the current step number. As the current SSP concludes,
these states transition to xz and v;. The dynamics model,
represented as (, captures the S2S relationship, mapping the
initial states s, = {, ,v, } and input toe pitch torque, 7,
to the resulting states s; = {z;,v; }.
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Fig. 1: Robot model: Digit Fig. 2: The S2S model maps the state
bipedal robot with 30 degrees at sz with the state at s, and control

of freedom and 20 actuated during the step uy.

joints.
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1) Analytical map from the LIPM: The LIPM maintains
the height of the COM at an approximately constant level
by controlling the hip, knee, and ankle joints. The LIPM
equations are linear and involve parameters such as gravity
(9), the constant height of the COM (z.), and the mass of
the robot (m).
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The input roll torque is denoted as 7,. Assuming no input
torques, the equations can be integrated analytically from
time 0 to 7%, resulting in an equation that conforms to the
form of Eqn. (1).

- :c£+ | Cr-x, +T.57 - vy,

() = |:U]€4+:|_ [ Sr/Te - + Cr - Uk] 3)
Here, St = sinh(7s/T.), Cr = cosh(Ts/T¢), and T, =
A/2¢/g. The superscripts L and N appended to the state
variables indicate whether they belong to the LIPM or the
regression model, respectively. It is important to note that the
equations apply to both the x (frontal) axis and y (lateral)
axis.

C. System homogeneity and state-independence

The homogeneity property of the LIPM, displayed in
Eqn. 2 when 7 = 0, enables analytical solutions and
simplifications, making it a viable model for investigating
bipedal walking dynamics. Additionally, the pendulum dy-
namics exhibit state independence and symmetry, relying



Fig. 3: Phase portrait of the LIPM with two P1 orbits shown in red and one
P2 orbit shown in black.

Fig. 4: Phase asymmetry displayed in NH-LIPM dynamics (black and purple
trajectories)

solely on the COM height. This behavior is illustrated in the
phase portrait shown in Fig. 3, where the blue lines depict
possible system dynamics at a given stepping frequency and
COM height. The dotted red lines represent the forward and
backward walking of the LIPM, completing a cycle in a
single step, while the dotted black lines demonstrate lateral
walking, completing a cycle in two steps. Fig. 4 illustrates
the phase trajectories for the LIPM (red) and a NH-LIPM
(purple and black). The NH-LIPM displays asymmetry. An
initial state A would normally lead to the final state B in the
LIPM. However, in a NH-LIPM the final state might be at
C. Similarly, a starting state at D would take the same path
as starting state A in the LIPM and end at state E, but would
take the purple path in the NH-LIPM to F.

1) Non-homogeneous LIPM: The LIPM falls short of
capturing the time and state-dependent variations and non-
linearities present in real-world dynamics as illustrated in
Fig 4. The NH-LIPM incorporates a time-varying and state-
dependent component that captures the deviations from the
idealized linear inverted pendulum dynamics. To derive the
time and state-dependent equation, data was collected to con-
duct a regression analysis and extract the non-homogeneous
term that compliments the LIPM, also known as the partic-
ular solution.

s’ = As +q(t,s) 4)

s(t) = e's(0) + f A q(y,8(v))dy (5)
0

n™(t) = ((s™,t) + h(s,1) (6)

Eqgn. 4 is the general dynamics equation of the NH-LIPM
where q is the time-variant nonhomogeneous term. Eqn. 5
is the system equation of motion which can be expressed as
the sum of Eqn. 1 and the particular solution h as shown in
Eqgn. 6. The non-homogeneous model incorporates a time-
varying component that captures the deviations from the
idealized linear inverted pendulum dynamics. The objective
is to find the analytical equation, h, that captures the time-
variant dynamics of the system and is a solution to the
nonhomogeneous system in Eqn. 4.
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Fig. 5: Model-based stepping. The stepping controller dictates the step size

uy, to achieve desired velocity v*.

The polynomial regression equation of degree n will fit the
form in Eqns. 7 and 8 where o and g are coefficients.

D. Enhancing the NH-LIPM with Forced Inputs

The NH-LIPM’s control method is limited to foot place-
ment and COM height. To further enhance the model, a forc-
ing term, g, is introduced to account for input parameters,
such as ankle torque/damping, which are not considered in
the traditional LIPM. Regression analysis is applied to extract
a function incorporating these additional parameters. This
refined model called the forced NH-LIPM (F-NH-LIPM),
offers an improved representation of the bipedal robot’s
dynamics.

TIF(t) =((s7,t) + h(S_,t) +g(s™,t,7) 9

where 7 are control inputs that may be desirable for better
continuous inter-step control.

IV. METHODS
A. Stepping Controllers

The S2S map from the analytical LIPM and data-driven
NH-LIPM were used to develop stepping controllers for
stable walking. We assumed there is no double support phase
during walking. Inverse dynamics is used to apply a force
on the base to ensure the hip position is at a desired constant
height z..

1) Model-based Stepping: The stepping controllers inputs
are step lengths uﬁ for the LIPM and ufﬂv for the NH-LIPM.

up = x(t)f 1 — ok =2) - (v}, — Crvp)Te/St
(10)
u = 2O — o =0 —hy (g, 27) A

where the superscript R in x(t);i%1 indicates the robot’s con-
tinuous state, fz; is the inverse function of h = hy (s7,t) +
xF~ used to solved for x; given a desired v} = Vges.

Feedback may be added to the controller to add stability,

as shown below.

ulf = wN + K (s(t)g —sp) (12)

x

where uf is the updated controller.
Along the lateral direction, the controller uff is employed.

rp = (ws)/2 (13)
ry = (vs) + j(rp) (14)
U;} = y(t);:ﬁ +ws + Ky (S(t)E - SE)

o+ Ko (s(t)F —ri) (15)



where w; is the desired step width of the robot, 7, is the
velocity vy;” when walking in a cyclic gait with y; equal
to 7,. The function j gives the cyclic velocity as a function
of the desired state y~ which in this case is half the step
width, ws/2. To move laterally, the term v, is added and,
therefore, can be used to control lateral walking speed. The
step width wg should be negative during the left stance and
positive during the right stance. More details on LIPM-based
stepping control can be found in [14] and [21].

B. Data Collection

To gather the necessary training data, we employed a
high-fidelity simulator, which emulates the behavior and
characteristics of the robot. This simulator is proprietary
to Agility Robotics. During these data collection trials, we
followed a procedure akin to what would be done on the
actual hardware. Running every trial at close to real-time
speed and starting and stopping each trial individually.

The simulator was used to run forward and lateral walking
simulations, which allowed us to gather S2S data in both
discrete and continuous formats. Similarly, on hardware, a
study was done on forward/backward (frontal) walking. By
adjusting the desired walking speed during training, with
control inputs z, and v, , we inherently introduced vari-
ability across different trials (see video [22]). This variation
enabled us to examine the impact of different walking speeds
on the robot’s behavior. For every step taken z,, v, , z(t),
and v(t) were stored parameters.

To derive the equation of the particular solution of the
NH-LIPM, regression analysis was employed on the error be-
tween the LIPM dynamics and actual robot dynamics shown
in Eqn. 16. The NH equation will then capture some of the
dynamics not captured by the LIPM and the summation of
the LIPM and the NH term will better approximate the robot
dynamics as shown in Eqn. 17.

ef =s(t); " —s(t); (16)
st~ st +h(sy 1) (17)

Data was collected using the Agility Robotics simulator.
For every training trial, the robot walked using LIPM-based
control at various speeds between 0 and 0.7 m/s, ensuring
every speed, with 0.1 increments, was trialed for at least 5
seconds. The regression analysis was done with initial states
(z7,v7) and time (t) as parameters and the continuous state
errors (el (t)) as regression outputs.

The F-NH-LIPM equation was formulated by fitting a
function to the model error with inputs to the equation as
shown in Eqn. 19.

ey =s(t)f " —st)}" —h(s;,t) = g(s; . t,7)

s ~s(t)f " + h(s; ) + g(sy,t.7)

(18)
19)

where e{cv is the model error of the NH-LIPM and g captures
the dynamics associated with the force inputs 7.

The LIPM and NH-LIPM controllers can control v;" or
x,j, but not both. The F-NH-LIPM (Eqn. 19) has two control
inputs, ukN and 7, so it can be used to control the states v,j

and either x;, or z;. We use 7 to control v; and leave z; as
a free parameter to which we may assign an arbitrary value.
Two control inputs were tested: ankle damping and ankle
torque. The ankle torque was a ramp torque applied during
the first quarter of the cycle. For every training trial, the
robot walked using LIPM-based control at speeds between
0 and 0.7 m/s with seven different force input values. Every
combination was tested for at least ten steps. The regression
analysis was done with initial states (z—,v™), inputs T,
and time (¢) as parameters and the continuous state errors
(el (t)) as regression outputs.
C. Recursive Least Squares (RLS)

The RLS algorithm was utilized in this study to enable
real-time adaptation of the discrete S2S model parameters.

The nonhomogeneous term (h in Eqn. 6) of the NH-LIPM
can be represented as ¢ in the linear form.

¢l = [6b7] (20)

c= [sz?UZH] (21)

b = [pi, vil (22)
| a1 a21

0= [ a21 a2 ] 23)

c contains the predicted center of mass position and velocity
error states [pj,, |, v}, ], c are the current error states, and
are the model parameters. The RLS LIPM would then take
the discrete form of n}'* = ((s™) + b7

The algorithm consists of an initialization state where the
error covariance matrix P is computed, often initialized as
an identity matrix, and the initialization parameters 6 are set.
The coefficients of the NH function are initialized to zero.
For illustration purposes, the RLS algorithm below predicts
the state v where as; and aso are the linear parameters of the
non-homogeneous term, ho, in the NH-LIPM. This method
can similarly be applied to the state p to predict parameters
al and a1 in hl.

oY)
Initialize { p_ L9 1

x (24)
02 = | az1 axn ]T
__ PoT
T A+ ¢PT 20
Iterate{ e = vf, | — oL ™ 27
6> =0y + Keo (28)
p_ P*if‘ﬁp (29)

The algorithm is iterated at every footstep where the re-
gressor, ¢, consisting of the inputs, is updated as shown in
Eqn. 25, and the Kalman gain, K, is computed from Eqn 26.
A is the regularization parameter used to prevent overfitting,
where larger values reduce the variance but increase the bias.
In Eqn. 27, the prediction error, e, is computed by subtracting
the current state error, vy, 1 from the predicted state error.
The parameters are then updated in Eqn. 28 where o is



the error factor used to smoothen out parameter outputs.
Finally, in Eqn. 29 the error covariance matrix is updated
by implementing a forgetting factor A, a value between zero
and one where a higher value means less forgetting.

The RLS algorithm operates by iteratively updating the
model parameters using a weighted least squares approach.
The objective is to minimize the difference between the
predicted outputs of the model and the actual measurements
obtained during walking as shown in Eqn. 27.

By applying the forgetting factor in Eqn. 29, older data
points are gradually assigned less weight in the parame-
ter update process. This allows the model to adapt more
quickly to changes occurring in the immediate past while
still retaining a degree of information from earlier steps.
The forgetting factor can be adjusted to strike an appropriate
balance between adaptability and stability, ensuring that
the model remains robust despite variations in the robot’s
dynamics.

To evaluate the performance of the RLS controller, we
intentionally varied several parameters that impact the dy-
namics of the robot. This deliberate variation was carried
out to create scenarios where the LIPM no longer accurately
captures the system dynamics. Specifically, we adjusted the
robot’s height by reducing it by 0.1 m, doubled the step
width, and modulated the toe damping between 20% and
60% of the maximum damping value of 28.5 Ns/m.

To assess the RLS controller’s adaptive tuning capability
for model parameters, we conducted a velocity tracking trial
and compared its performance to that of the LIPM.

V. RESULTS AND DISCUSSION
A. Regression Analysis (Simulation)

The non-homogeneous regression equation consists of a
3rd-order polynomial function of the z+ (Eqn. 7) and a
7th-order polynomial function of the v* map (Eqn.8). The
adjusted R-squared value for the regression analysis was 0.81
for x,j and 0.79 for v;+. The mean absolute error (MAE) of
the continuous NH-LIPM regression was 0.0022 m for x and
0.0116 m/s for v. A reduction of 80% and 6%, respectively,
when compared to the LIPM. The MAE of the discrete NH-
LIPM regression was 0.0039 m for x and 0.012281 m/s for v.
A reduction of 28% and 82%, respectively, when compared
to the LIPM. Fig. 6 shows the continuous S2S modeling
absolute errors of the training set using the LIPM (left) and
the NH-LIPM (right). The y-axis on the plot depicts the
initial states x, and v, of the tested data. The S2S COM
position is captured poorly at faster speeds and towards the
end of the step, as denoted by the large error seen at wider x;
and higher time (¢) in Fig. 6(a). Conversely, the NH-LIPM
displays errors below 1 cm, as seen in Fig. 6(b). The S2S
continuous COM velocity prediction does poorly at higher
v, and around the middle of the cycle. However, the discrete
prediction, marked by the prediction made at time ¢ = 0.4
in Fig. 6(c) displays a lower error.

Fig. 7 depicts the phase portraits of the LIPM and
the NH-LIPM. Although the LIPM phase portrait is state-
independent, it can only predict the states of the model

0.4 o 0.1

0.1 04

0.2 0.3 0.2 0.3
time (s) time (s)

(a) LIPM z(t) absolute error

(b) NH-LIPM z(t) absolute error

(=

0 0.1 0.4 0.1 0.4

02 03
time (s)
(d) NH-LIPM v(t) absolute error

t?ﬂ%e (s) 03
(c) LIPM wv(t) absolute error

Fig. 6: Surface plots of the S2S modeling errors seen in the regression
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Fig. 7: (a) Test data overlayed on the LIPM phase portrait. (b)Test data
overlayed on the NH-LIPM phase portrait.

loosely. However, it is evident that for the given step fre-
quency, the portrait trajectory, and dynamics closely intersect
at the end of the cycle. This might be why it is possible to
employ LIPM-based stepping for our system, as the error
of the discrete S2S map is low. Fig. 7(b) shows the phase
portrait of the NH-LIPM, which better tracks the continuous
dynamics of the system. It is worth mentioning that, unlike
the LIPM portrait, the phase lines in the NH-LIPM portrait
will change depending on the initial states z~ and v~. This is
because the actual dynamics of the robot are state-dependent
and nonlinear, which the LIPM does not account for.

The regression analysis of the lateral dynamics yielded
a 3rd-order time polynomial function for the v* map with
an adjusted R-squared value of 0.62. The lateral continuous
NH-LIPM displayed a mean absolute error of 0.026 m/s, a
reduction of 46% when compared to the LIPM. The discrete
NH-LIPM displayed a mean absolute error of 0.0408 m/s,
a reduction of 41%. Fig. 8 shows the absolute error in the
continuous velocity models.

This polynomial regression analysis demonstrated the ef-
fectiveness of the NH-LIPM in capturing the dynamics of
the robot. The R-squared values indicate a high correlation
between the regressed parameters and the dynamics. Further-
more, the NH-LIPM showed greater accuracy in predicting
the dynamics of the system compared to the LIPM. The
model may be further enhanced by employing advanced
learning techniques such as Gaussian Processes or neural
networks.

B. Regression Analysis on External Forces

Regression analysis was conducted to extract the F-NH-
LIPM with two separate external forces as control. The
joint-damping-control model (g in Eqn.9) is a 7th-order
time polynomial function with squared states and 1st-order
damping . The R-squared value for the regression was 0.82.
The MAE of the continuous velocity dynamics was 0.008859
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m/s. This is an improvement of 57% when compared against
the NH-LIPM and 76% against the LIPM. The MAE of the
discrete model yielded an improvement of 74% and 75%
compared to the NH-LIPM and LIPM, respectively.

The ankle-torque-control model is a 7th-order time poly-
nomial function with squared states and 1st-order damping.
The R-squared value for the regression was 0.86. The MAE
of the continuous velocity dynamics was 0.012147 m/s. This
is an improvement of 60% when compared against the NH-
LIPM and 78% against the LIPM. The MAE of the discrete
model yielded an improvement of 54% and 77% compared
to the NH-LIPM and LIPM, respectively. Fig. 9(b) shows
the test set continuous v(t) error bands of the three models.

Although the NH-LIPM was improved for the general
case, it showed significant prediction errors for the case
when the model experiences force inputs. The F-NH-LIPM
is able to capture these forces as input parameters in the
model, showing improved prediction accuracy. This layered
model can be expanded to include other favorable control
parameters, such as a toe push-off force which may give the
controller greater flexibility and the capability of performing
task-specific control.

C. Stepping Control: tracking a reference velocity

We evaluated the performance of the model and controller
framework in tracking a reference velocity profile, denoted
as v} . The MAE was utilized as a performance metric,
calculated by subtracting the reference velocity from the
actual velocity at each step and taking the mean.

When considering the frontal (x) axis, the LIPM stepping
controller, as represented by Eqn. (10), yielded a MAE of
0.165 m/s. In contrast, the NH-LIPM stepping controller,
described by Eqn. (11), achieved a MAE of 0.01 m/s,
demonstrating a 91% improvement over the LIPM. These
results are illustrated in Fig. 10a.

For the lateral (y) axis, velocity tracking was performed
on the mid-cycle state v(T5/2), where v(Ts/2) is employed
to solve for v, in Eqn. 14. The LIPM stepping controller
exhibited a mean absolute error of 0.02 m/s, whereas the
NH-LIPM stepping controller achieved a mean absolute error
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Fig. 10: NH-LIPM: Velocity tracking model comparison along the fore-aft
(x) direction (a), and the lateral (y) direction (b) .
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Fig. 11: F-NH-LIPM: Velocity tracking at 2.85, 11.42, 17.13, and 5.7 Ns/m
ankle damping input.

of 0.016 m/s. An improvement of 21% over the LIPM can
be observed in Fig. 10b.

The NH-LIPM improved velocity tracking for both the
continuous and discrete models. This improvement is due
to the increased model prediction in the NH-LIPM, making
it better suited not only for steady-state control but also for
model predictive control requiring task-specific acyclic gaits.

D. F-NH-LIPM: tracking a reference velocity with varying
ankle damping

The F-NH-LIPM was employed to achieve velocity track-
ing by adjusting the damping coefficient on the stance ankle
joint. The bipedal robot underwent walking experiments at
three different speeds, while the toe actuators of the stance
foot were augmented with four random damping coeffi-
cients (2.85, 11.42, 17.13, and 5.7 Ns/m). By incorporating
the damping value as inputs to the F-NH-LIPM model,
the system demonstrated superior tracking performance, as
depicted in Fig. 11, exhibiting a MAE of 0.1 m/s. This
represented an improvement of 21% and 16% compared to
the performance of the conventional LIPM and NH-LIPM
models, respectively.

The F-NH-LIPM controller with ankle-damping input
tracks the reference velocity better than the NH-LIPM and
LIPM. It contains parameter information that the other
models don’t have. This extra control parameter can expand
the feasible stepping space and walking velocity achieved by
the robot, as adding damping to the ankle can result in slow
walking with wider steps. However, as seen in Fig. 11, even
the F-NH-LIPM tracks poorly with high damping values. The
model could be further enhanced by adding a higher-order
polynomial to the parameter to capture the nonlinearities
better.

E. F-NH-LIPM: velocity and step width control

The F-NH-LIPM was utilized to develop a two-input
controller capable of controlling both the desired COM
velocity (vT) and position (z 7). The control inputs for this
controller are the foot location at the footstrike (x,;) and the
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Fig. 12: F-NH-LIPM: Using step length and ankle torque (a) for control
of v (b) and z~ (c) using the F-NH-LIPM controller.

ankle torque (7). Throughout the trial, the desired velocity
(v}.,) was maintained at a constant value of 0.2 m/s, while
the desired position (z_ ) was modulated.

As shown in Fig. 12, the robot’'s COM velocity, veom (),
closely follows the desired velocity (v} ,), with a MAE of
0.032 m/s. Similarly, the state z~ successfully tracks the
trajectory of the desired position (z,,,), achieving a MAE
of 0.016 m.

These results demonstrate the effectiveness of the F-NH-
LIPM controller in accurately controlling both v* and x~.
This additional control input can help navigate a constrained
environment where several robot states must be achieved for
proper navigation. The controller is in its most basic form
and can be improved with feedback control to achieve more
stability and fewer steady-state errors. It is worth noting
that not every control pair combination will yield a feasible
response, and as such, it is essential to have boundary
conditions on the controller inputs.

F. Real-Time Adaptation of Linear S2S Model

Implementing the RLS controller involved several tuning
trials to determine suitable parameter values. For the frontal
axis, the forgetting factor (\) was set to 0.95, and the
regularization parameter (A) was set to 0.1. Along the lateral
axis, A was adjusted to 0.97, and A was set to 0.99.

Fig. 13 illustrates the velocity tracking performance of
the RLS controller compared to the LIPM controller. In the
forward direction, the MAE achieved by the RLS controller
was 0.0604 m/s, which is 43% lower than the MAE obtained
by the LIPM controller. In the lateral direction, the MAE
achieved by the RLS controller was 0.0648, an improvement
of 21% over the LIPM. During lateral walking using the
LIPM controller, the model discrepancy caused the robot
to tip over, as shown in Fig. 13. These results demonstrate
the superior tracking capabilities of the RLS controller in
comparison to the traditional LIPM controller.

Additionally, Fig. 14 showcases the adaptive tuning of
the RLS parameters ag; and aso along the x and y axes,
respectively, as the damping is varied. This adaptive tuning
capability allows the RLS controller to dynamically adjust
its model parameters to handle changes in the damping
conditions effectively. Parameter convergence is achieved in
less than 5 seconds on average.

These findings highlight the effectiveness of the RLS
controller in achieving improved velocity tracking and its
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Fig. 13: RLS vs LIPM: Lateral (a) and forward (b) walking velocity
tracking comparison between the adaptive RLS and the LIPM stepping
controllers. Failure occurs during lateral walking with LIPM controller.
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Fig. 14: RLS controller: (a) Deliberate damping variations were used in
the trial. (b)-(c) the RLS controller performed online tuning of the model
parameters

ability to adaptively tune its parameters based on the chang-
ing conditions of the system. With an adaptive model, a
”close-enough” representation of the robot’s dynamics can
be extracted, which can then be utilized to develop stepping
controllers. This eliminates the need for a time-consuming
trial-and-error process typically associated with developing
accurate models for walking controllers.

G. Preliminary Hardware Results: Extracting the Non-
homogeneous LIPM

The regression analysis on hardware yielded an R-squared
value of 0.87 with a MAE of the continuous NH-LIPM of
0.0156 m/s, which is an improvement of 55% compared to
the LIPM. The MAE of the discrete NH-LIPM was 0.01369
m/s, an improvement of 75% compared to the LIPM.

The results of the velocity tracking experiment is shown
in Fig. 15. The tracking MAE of the NH-LIPM controller
was 0.043 m/s, an improvement of 48% compared to the
LIPM controller. This preliminary experiment shows the
effectiveness of the regression-based NH-LIPM on hard-
ware. The tracking MAE was reduced when compared to
the traditional LIPM controller. The NH-LIPM controller,
however, displayed less steady-state stability due to the use
of a nonlinear model. The stability will be addressed via
feedback control and controller tuning in future studies.

VI. CONCLUSION AND FUTURE WORK

Our findings demonstrate the enhanced performance and
effectiveness of the NH-LIPM in predicting the dynamics of
the bipedal robot Digit. The NH-LIPM introduces a time and
state-dependent component that enhances the accuracy of the
robot’s S2S dynamics. By extracting the solution to the non-
homogeneous term through regression analysis, we account
for the time/state-varying aspects of the robot’s behavior,
resulting in a more comprehensive model that better captures
the real-world dynamics. Hardware testing yielded promising
results.
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Fig. 16: v

Jes tracking hardware experiment using the NH-LIPM controller.

The NH-LIPM was supplemented with a forced term, with
ankle damping and torque as input parameters, to develop
the F-NH-LIPM. The F-NH-LIPM controller accurately and
simultaneously controlled the COM velocity and COM posi-
tion of the robot with respect to the stance foot. This refined
model enables a more effective control strategy facilitating
navigation in environments that require simultaneous control
of multiple states, such as foot placement and COM velocity.

The RLS algorithm was used to adaptively tune the
parameters of the particular solution to the NH-LIPM. The
RLS controller with forgetting, effectively modulated the
parameters and reacted to deliberate changes in the robot
dynamics like height, step width, and ankle damping. A
velocity-tracking experiment showed the RLS controller’s
ability to track a reference velocity with changing ankle
damping.

Overall, the findings of this study support the use of
the NH-LIPM as a valuable model for understanding and
controlling bipedal walking. The incorporation of non-
homogeneous terms through regression analysis improves the
accuracy of the model, enabling more precise predictions of
the COM position and velocity.

Future work will center on implementing the discussed
methodologies on hardware, with a key focus on enhancing
the stability of the hardware NH-LIPM. To bolster the
predictive capabilities, a more extensive training set will
be utilized, augmenting the convex hull of the regression
function. Experiments will be conducted to examine the
NH-LIPM controller on lateral stepping. Additionally, the
integration of ankle damping and torque as control inputs to
the F-NH-LIPM will be explored on hardware. Lastly, to val-
idate the model’s practical applicability, a model predictive
stepping controller will be deployed, employing the F-NH-
LIPM to navigate challenging terrains with obstacles. This
comprehensive evaluation of real-world hardware will further
enhance the model’s efficacy and facilitate its integration into
bipedal robotic research.
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