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ABSTRACT  

Despite tremendous potential, predictive 

simulations for exoskeleton control tend to 

overpromise the performance of assistance on 

walking. The transition from simulation to hardware 

faces several hurdles such as difficulty representing 

human-machine interface, an overreliance on 

intuition, and a lack of exploration in assistive 

strategies. This work presents a simulation-to-

hardware strategy that creates optimized assistance 

profiles to implement on a hip exoskeleton to assist leg 

swinging as an intermediary step to improve control 

strategies for walking. By simplifying the activity we 

were able to observe a smaller disconnect between 

simulation and hardware. In addition, the comparison 

provided insight on the differences between the 

effectiveness of assistance on frequency of the activity 

and type of work. 

Keywords: rehabilitation robotics, hip 

exoskeleton, optimization, simulation 

 

1.     INTRODUCTION 

The use of exoskeletons as assistive devices has 

become increasingly popular in recent years. In 

particular, improving how exoskeletons assist people 

while walking has become a significant area of 

research. Several different devices have surfaced over 

the years that provide assistance in a manner that 

reduces the energy economy [1–3]. However, assistive 

strategies still cannot fully account for the human-

machine interface and in turn, lead to diverging results 

when carrying over simulation results into hardware 

[4,5].  

Predictive simulations are extremely useful tools 

in the world of exoskeletons since they allow rapid 

implementation of control strategies without the need 

for costly experiments [6,7]. In a digital realm, 

promising control strategies can be investigated on 

simpler models by applying them to representations 

that can mimic the reaction of a user [6, 7]. However, 

model-based control carried over to hardware often 

falls short [10]. These models cannot fully capture the 

complexity of human interfacing with the device and 

in turn over promise reductions in the energy economy 

[11]. Therefore, despite a steady increase in the 

sophistication of simulation technology [8], there is 

still a gap between digitally optimized results and 

optimized control implemented in hardware. 

There are several reasons why this is a 

challenging problem to tackle. The objective of 

representing the physical interactions between a 

human and an orthotic is difficult to fully grasp in a 

simulated environment [12,13]. Simulations are meant 

to simplify the real world to allow an easier 

exploration of control solutions. Most simulations in 

the world of robotics that carry over to real-world 

implementations face a need to be adjusted [14]. One 

aspect that makes this particularly difficult with 

orthotics is the human element [12]. Exoskeleton 

simulations are constantly being improved to better 

represent their real-world counterpart [15]. Still, 
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perhaps instead of bringing the simulated world closer 

to the real world first, it might be necessary to bring 

the real world closer to the simulated one. Current 

models might be oversimplified for the task they are 

trying to mimic, but making the models more complex 

might compound the difficulty of making a good 

simulation. Making a simulation more sophisticated 

requires more computational power or significantly 

longer simulations. Instead, carrying over to a simpler 

activity to analyze how current simulated optimized 

results perform could be beneficial. Stationary leg 

swinging would allow the activity to come to the 

model instead of the other way around. The dynamic 

nature of walking and the need for balance make it 

complex to represent. Leg swinging utilizes the same 

hip flexor and extension muscle groups as walking, 

making it a suitable precursor [16]. A stationary leg 

swing can also be closely resembled with relatively 

simple models such as the pendulum model or two 

antagonistic Hill-type muscle models (Fig. 1); two 

already common simulation models in the world of 

assistive robotics. Each muscle model is comprised of 

a series elastic element (SE), a parallel elastic element 

(PE), and a contractile element (CE)  [17,18].  

 

 
FIGURE 1: PENDULUM SYSTEM WITH 

ANTAGONISTIC HILL-TYPE MUSCLE MODELS 

WHERE RECTUS FEMORIS (RF) PRODUCES 

POSITIVE TORQUE AND BICEP FEMORIS (BF) 

PRODUCES NEGATIVE TORQUE [19]. 

Another potential issue causing the gap between 

simulation and hardware is the heavy reliance on 

intuition [10]. Despite using the same model, different 

assumptions will lead to varying results. This can be 

problematic when carrying over to a physical 

optimization where the quality of the initial data is 

critical [20]. Allowing for a simulation to not rely on 

the manual tuning by the researcher and limiting the 

number of assumptions could lead to an improved 

comparison. Implementing a discrete optimization in 

simulation allows us to do this. A timing based 

approach has shown the limitation of being prone to 

discrepancies caused by execution speeds [14]. With 

discrete optimization of a robust control system, such 

as a mathematical model relating torque and swing 

angle, we can allow the simulation to paint a picture 

for us instead of leading it by the nose [21].    

One last potential issue is the lack of exploration 

within assistive strategies [22]. The design process of 

exoskeletons often focuses on singular functionality 

and the development of these devices takes years [10]. 

This narrows the types of controls that the device can 

implement and leads to slow progress. This also 

effectively limits the strength of simulation which is 

rapid exploration of varying types of control. If the 

device cannot harvest the strengths of simulation then 

it limits the potential of finding effective control laws. 

Therefore, carrying over several types of control laws 

to explore in hardware would provide an arsenal of 

assistive strategies to target several types of activities 

and individuals with varying reactions to assistance. 

In order to explore the gap between simulation 

and hardware this project investigates a side by side 

comparison of optimized swinging leg torque 

controllers applied to simulated models and an active 

hip orthoses. Comparing these two datasets side by 

side with a simplified activity and a robust simulation 

could lead to insight on how to improve the simulating 

process for exoskeletons. In doing so, simulations 

could provide us a significantly better starting point 

when we implement and optimize controllers in 

hardware. 

2. METHODS 

2.1 Discrete Optimization 

In order to avoid relying on intuition about what 

shape of a discrete torque profile might assist a person 

best, we turned to simulation to give us an indication 

of what a promising torque profile shape might be. The 

ultimate goal of this process was to discover viable 

torque profiles to pass on to hardware, test them, and 

conduct a comparison.   

The optimization done in simulation allowed for 

20 discrete points throughout a forward swing of a 

pendulum. The pendulum starts at -20° (with respect 

to the vertical) and swings to 30°, starting and ending 

with zero velocity. These conditions resemble the 

desired swing of a leg that will be the center of 

exoskeleton experiments. In order to observe how 

different swinging frequencies would affect the torque 
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profile shape, four different frequencies ranging from 

1.32 to 1.97Hz were simulated. These frequencies 

correspond with observed natural walking frequencies 

[23].  

The process was split into 3 different steps: 

optimization on a pendulum model to extract the shape 

of the torque curve, optimization on a muscle model to 

set the optimal curve parameters, and validation in 

simulation. 

By giving the optimization program the ability to 

select any torque value within a range discretely n 

amount of times throughout the swing, it allows the 

sequence to draw different pictures according to a 

desired metric. A similar situation is tested using the 

more complex model. This model allows us to take a 

step closer to what we are actually seeking to do: lower 

the effort of a muscle during a swing.  Once shapes are 

generated by both models they need to be validated 

against a model that does not have assistance. The 

reduction in energy or torque is observed and tested 

for statistical significance. The profiles that perform 

well at this step advance to hardware. 

The torque profiles that come out of simulation 

are implemented in hardware by coding the 

mathematical relationship between angles of the swing 

and torque as they relate to a handful of parameters. 

Once these are implemented, baseline experiments are 

conducted to observe if there is a reduction in EMG. 

Then these are compared to simulated results.  

2.2 Simulation 

2.2.1 Pendulum Model 

Using a pendulum model allows for quicker 

generation of viable shapes. The pendulum model was 

represented by the following equations:  

ẋ1 =   x2                             (1), 

ẋ2 =  −
𝑔

𝐿
sin(𝑥1) +

𝑢

𝑚𝐿2              (2),   

where x1 is angle, x2 is angular velocity, g is gravity 

(9.8m/s/s), L is length of the pendulum (.365m), m is 

mass of the leg and u is the control or torque applied 

in Nm.  The length and mass chosen were derived from 

anthropometric data [24]. 

Several cost functions were explored to produce 

as many viable torque profiles to carry on to further 

steps. The investigated cost functions included: 

 

 Root mean squared of torque 

 Peak torque 

 Energy  

 Jerk 

 Momentum  

 Impulse 

The torque profiles produced by this model 

provided insight into the types of shapes that could do 

well in a more complex model. Analysis on the torque 

profiles was conducted to extract the tunable 

parameters to be optimized on a muscle model. 

2.2.2 Hill-type Muscle Model 

While the pendulum is very useful for its 

simplicity, it lacks the concept of using antagonistic 

energy dependent components. Simulated muscles 

(Fig. 1) are a better indication of what might be useful 

to implement on a person because the metrics 

associated with them are dependent on activation time 

and the reduction of simulated biological torque. For 

these sets of simulations there were two different 

focuses for exploration.  

The first involved carrying over the shapes 

developed with the simpler model through a 

parametrized version of the relationship between 

torque and angle. In an attempt to simplify the 

implementation on hardware, the number of 

parameters used to represent each profile was kept to 

a minimum. The number of parameters varied from 3 

to 6. Parameters revolved around torque magnitudes 

and timing with relation to angle.   

The second focus allowed for the exploration of a 

discrete optimization of the HIL Muscle Model using 

a weighted cost function. Since this type of simulation 

involved the interaction between two systems, 

elements from both were represented when seeking an 

optimal solution (motor torque and biological torque). 

The cost function therefore allowed for both motor 

power and biological torque to be optimized with a 

heavier emphasis on the biological component. This 

optimization problem is shown in equation 3;   

𝑚𝑖𝑛
𝝉𝑚

𝑤 ∗  ∫ 𝜏𝑏
2 𝑑𝑡 + (1 − 𝑤) ∗ 

𝝉𝑚
𝑇 𝝉𝑚

∆𝑡
  (3), 

 

where 𝝉𝒎 is a vector containing the 20 discrete motor 

torque values and 𝜏𝑏 represents the biological torque 

given from the muscle model. Varying values of w 

were tested.  
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The muscle activation was modeled using a PID 

controller to stimulate two antagonistic muscles. The 

PID controller produced a stimulation signal by trying 

to minimize the error between current angle and a 

desired angle equal to the maximum forward position. 

Positive torque would be generated by a simulated 

rectus femoris and negative torque was generated 

using a simulated bicep femoris. The respective 

muscle parameters for each were implemented from 

established HIL muscle models [18]. 

In order to carry over the simulation profiles into 

hardware, the successful candidates were fitted to a 

mathematical relationship corresponding angle input 

to a torque output. These relationships were meant to 

be as simple as possible to observe parallels between 

simulation and hardware easily.   

2.2.3 Simulation Validation 

Performance of the torque profiles produced by 

the HIL muscle model were evaluated against a 

simulation with no assistance (pure simulated 

biological torque). The root mean squared of the 

differences between the two simulations was used as 

this performance.  

𝑃𝑅 =
𝑅𝑀𝑆(𝑏)−𝑅𝑀𝑆(𝑠𝑖𝑚)

𝑅𝑀𝑆(𝑠𝑖𝑚)
                       (4) 

This metric is represented mathematically by 

equation 4, where 𝜏𝑠𝑖𝑚  is the biological torque of the 

non-assisted profile, and 𝜏𝑏 is the biological torque of 

the assisted profile. 

2.2.4 Positive vs General Work 

Another concept of interest was comparing 

positive versus general work. Assistive forces for an 

exoskeleton are typically associated to be positive 

work, or that which aligns the torque with the direction 

of travel. In other words if the person is moving their 

limb with positive velocity then assistive forces would 

supply positive torque. However, when there is a limit 

on the range of motion it might be counterproductive 

to supply excessive torque if the person is desiring 

their limb to slow down, indicating a need for negative 

work. The search for an ideal torque profile is then 

split in two: optimization that allows for general work, 

no restrictions on torque values, and optimization that 

allows for only positive work. Both were explored in 

simulation and carried over in parameterized versions 

to hardware. Comparison of the effects were analyzed 

in simulation and hardware metrics. 

 

2.3 Hardware 

2.3.1 Device 

The device used to supply the assistance was a hip 

exoskeleton consisting of a BLDC motor and a series 

of straps. The control system consisted of a raspberry 

pi that received angle data from a rotary encoder and 

supplied a torque command to an AK70-10 T motor. 

Torque was communicated using CAN bus protocol. 

Proper safety measures were implemented with an 

emergency stop and software torque cutoffs. The 

device is shown in Fig. 2.  

 
FIGURE 2: MAIN COMPONENTS OF THE HIP 

EXOSKELETON DEVICE 

2.3.2 Controller 

The level of assistance was dictated by torque 

control abiding by the aforementioned mathematical 

relationship between torque and angle. This 

relationship simplified the manner of control by 

creating parameters that focus on 3-6 critical features 

of the torque profile (torque magnitudes and 

locations). In order to only apply torque during the 

forward swing, a finite state machine was 

implemented. The state machine had two different 

states representing forward and backward swing. 

Transitions were triggered with a change in velocity 

direction derived from the encoder.  

2.3.3 Experimental Procedure 

In order to measure the effectiveness of each 

torque profile on hardware, the muscle activity of two 

muscles was measured. The rectus femoris and the 

bicep femoris of the swing leg were equipped with 

Delsys sensors.  

Before applying any assistance torque, EMG 

activity was collected for 3 trials of 2 minutes each. 
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These initial data collection sessions served as insight 

into how long a data collection session should last to 

produce a good comparison metric. Once processed, 

the data indicated that EMG average stabilizes around 

20 seconds of data collection and fatigue sets in around 

90 seconds. An ideal capture time of 30 seconds was 

selected for each condition. 

Before swinging with assistance the subject was 

asked to swing with no exoskeleton on (NE) and with 

zero assistance (ZA). These would serve as the 

comparison baseline to measure performance. In 

addition, the maximum voluntary contraction (MVC) 

was taken for each muscle to normalize the data.  

The swing amplitude was confined to -20 to 30 

degrees using physical bumpers on a structure. A 

metronome was used to promote the subject to swing 

at the desired frequency. The upper body was confined 

using a physical structure. The physical structure is 

represented in Fig. 3. 

 
FIGURE 3: ILLUSTRATION OF THE PHYSICAL 

STRUCTURE AND EXPERIMENTAL SETUP. SHAPES 

INDICATE KEY FEATURES; SQUARES HIGHLIGHT 

BUMPER LOCATIONS WHILE CIRCLES SHOW 

SENSOR PLACEMENT 

Each torque profile was applied twice to the 

subject (male, 80kg) and EMG data was collected. 

This was done for all 6 torque profiles.  

 

 

2.3.4 Data Processing 

The EMG data collected from both muscles was 

processed in MATLAB. Each EMG signal was 

rectified, smoothened, and normalized against the 

MVC. For each torque profile, the assistance data (AP) 

was compared to the non-assisted data (NA) by taking 

the percent difference of a combined representation of 

muscle activity. The representation averaged out the 

root mean squared of the rectus femoris and the bicep 

femoris.  

% 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = (𝐴𝑃 − 𝑁𝐴)/𝑁𝐴           (5) 

3. RESULTS AND DISCUSSION 

3.1 Simulation Results 

3.1.1 Pendulum Model 

Most of the shapes produced by the cost functions 

implemented in the pendulum model converged to a 

similar profile. This being the case, one of the metrics 

selected to advance was the root mean squared of 

torque. Fig. 4 represents the shape produced by this 

cost function, referenced in the future as RMS. 

 

 
FIGURE 4: TORQUE VS ANGLE RELATIONSHIP OF 

THE RMS TORQUE PROFILE OF FOUR DIFFERENT 

SWING FREQUENCIES CALCULATED FROM 

NATURAL FREQUENCY (NF) 

This profile was carried over to be optimized with 

a muscle model by fitting the relationship between 

torque and angle with a four parameter relationship. 

The parameters represent the 3 values of torque and a 

location. These values include the value found at 

lowest angle (P1), peak torque value (P2), and torque 

value found at highest angle (P3) and location of the 

peak torque (L). The values are then connected with a 
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linear relationship. The fitting of the torque profile is 

represented in Fig. 5. 

 
FIGURE 5: PARAMETERIZATION OF THE RMS 

PROFILE WITH 4 VALUES WHERE P1, P2, AND P3 

REPRESENT TORQUE CHECKPOINTS ALONG THE 

SWING; L REPRESENTS LOCATION OF THE CENTER 

TORQUE VALUE  

The only other metric that did not converge to the 

RMS equivalent shape was the cost function that 

minimized peak torque. This produced a flatter 

association between angle and torque that can be 

observed in Fig. 6. This profile is dubbed PKK for 

reference.  

 

 
FIGURE 6: TORQUE VS ANGLE RELATIONSHIP OF 

THE PKK TORQUE PROFILE OF FOUR DIFFERENT 

SWING FREQUENCIES CALCULATED FROM 

NATURAL FREQUENCY (NF) 

Similar to RMS, this profile was fitted to be 

optimized with the muscle model. Three parameters 

were used for this profile. They consisted of initial 

torque value (V1), later torque value (V2), and the 

angle at which they switch (S). A visual example of 

this can be observed in Fig. 7. 

 
FIGURE 7: PARAMETERIZATION OF THE PKK 

PROFILE WITH 3 VALUES WHERE V1, AND V2 

REPRESENT TORQUE MAGNITUDES AND S 

REPRESENTS LOCATION OF THE SWITCH 

3.1.2 HIL Muscle Model 

The discrete optimization of the muscle model 

using the weighted cost function produced a third type 

of profile. This torque profile can be observed in Fig. 

8 and is dubbed DISMM. 

 
FIGURE 8: TORQUE VS ANGLE RELATIONSHIP OF 

THE DISMM TORQUE PROFILE OF FOUR DIFFERENT 

SWING FREQUENCIES CALCULATED FROM 

NATURAL FREQUENCY (NF) 

Fitting this profile was simplified to 6 parameters, 

four values of torque magnitude (D1, D2, D3, and D4) 

and 2 locations (C1, and C2). These are visually 

represented in Fig. 9. 
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FIGURE 9: PARAMETERIZATION OF THE DISMM 

PROFILE WITH 6 VALUES WHERE D1-D4 

REPRESENT TORQUE MAGNITUDES AND C1-C2 

REPRESENT LOCATIONS 

Each of these profiles have a positive work only 

counterpart. To label appropriately, PW is added to 

each to dictate the distinction. Therefore the 6 profiles 

that carried over to validation were RMS, PKK, 

DISMM, RMS-PW, PKK-PW, and DISMM-PW.  

3.1.3 Software Validation 

Each of the 6 profiles were validated in simulation 

by comparing the root mean squared of their biological 

torque component against the root mean squared of the 

biological torque of a simulation with no assistance. 

The percent change in the biological torque was then 

calculated for each profile and used as the metric to 

compare against.  

TABLE 1. PERCENT CHANGE IN BIOLOGICAL 

TORQUE 
  80% NF 90% NF 110% NF 120% NF 

RMS -37.03% -31.45% -15.86% -20.72% 

PKK -28.03% -20.66% -4.21% -9.07% 

DISMM -41.55% -29.06% -11.10% -17.69% 

RMS-PW -37.62% -27.36% -15.85% -20.75% 

PKK-PW -33.31% -4.00% -10.41% -8.91% 

DISMM-

PW 

-33.02% -22.34% -7.35% -15.19% 

 

Table 1 shows the calculated metrics for each 

profile across all four frequencies. All profiles led to a 

statistically significant (p<.05) reduction in the 

biological torque of a single swing.  

3.2 Hardware Results 

3.2.1 No Exoskeleton Metric 

After processing all EMG signals, a metric 

representing the reduction of EMG was calculated for 

each profile at each swing frequency.  

TABLE 2. PERCENT REDUCTION OF NORMALIZED 

EMG COMPARED AGAINST FREE SWINGING 
  80% NF 90% NF 110% NF 120% NF 

RMS -27.87% 8.14% -17.59% -33.81% 
PKK -16.38% -28.69% -33.35% -26.49% 
DISMM -22.17% -23.03% -31.15% -35.67% 
RMS-PW -26.34% 14.51% -28.95% -33.95% 
PKK-PW -19.14% -29.00% -27.44% -34.93% 
DISMM-

PW 
-22.29% -3.92% -33.21% -35.88% 

 

This metric represented the change in muscle 

activity between free swinging and swinging with 

assistance with a normalized representation of both 

muscles. Table 2 shows the comparison of how each 

profile performed across four swing frequencies.   

3.2.2 No Assistance Metric 

Another metric of interest was how the profiles 

performed when measure against no assistance, 

wearing the exoskeleton but not providing assistive 

torque. The no assistance data was collected while the 

subject would swing their leg at each frequency while 

wearing the exoskeleton unpowered. Table 3 depicts 

the percent reductions using this metric.  

TABLE 3. PERCENT REDUCTION OF NORMALIZED 

EMG COMPARED AGAINST SWINGING WITH AN 

UNPOWERED DEVICE 
 80% NF 90% NF 110% NF 120% NF 

RMS -21.75% 2.12% -13.78% -19.13% 
PKK -9.28% -32.66% -30.27% -10.19% 

DISMM -15.57% -27.32% -27.97% -21.41% 
RMS-PW -20.09% 8.13% -25.66% -19.30% 
PKK-PW -12.28% -32.95% -24.09% -20.50% 
DISMM-

PW 
-15.69% -9.27% -30.12% -21.66% 

 

3.3 Discussion 

3.3.1 Hardware vs Simulation 

Averaging out all the profiles for each category 

leads us to observe that the hardware implementation 

can outperform the simulation. Simulation results 

average out at a reduction of 20.94% while the percent 

change between assisted swinging and free swinging 

average out to a decrease of 23.69%. However, not all 

hardware controllers produced a reduction in EMG 

activity. Few, all of the RMS derivation, produced an 

increase in activity. This is most likely due to the low 

parameters selected right below the natural frequency. 

The optimization likely recognized this as a region 

needed minimal assistance. 

3.3.2 Higher Frequency vs Lower Frequency 

Swinging at different frequencies was important 

to observe how well each type of profile could handle 
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variants of the activity. Since we walk at different 

velocities, it is an important aspect of what 

exoskeletons should be able to assist. Table 4 presents 

a comparison between low and high frequency 

swinging. It is an interesting note that simulation is 

able to generate a better performance with lower 

frequency than with higher frequency. On the other 

hand, high frequency is favorable for hardware to 

assist. This is perhaps due to the amount of energy it 

takes to swing a leg stationary at that frequency and 

having some level of assistance reflects higher than 

lower energy demanding frequencies. Further 

experimentation will focus on a more global metric to 

observe if the trend is true a scale beyond just two 

muscles.   

TABLE 4. COMPARING EFFECTS OF LOW VS HIGH 

FREQUENCY 
 Low Frequency High Frequency 

Simulation -28.79% -13.09% 

No Device -16.35% -31.04% 

Unpowered -15.55% -22.01% 

 

3.3.3 Generic Work vs Positive Work 

Exoskeleton assistance it typically associated 

with positive work exclusively. Negative work can 

impede with natural motion of an individual. 

However, allowing a small amount of negative work 

to achieve an objective seems to be favorable. The data 

in Table 5 reflects this. Implementation of general 

work controllers outperforms those with exclusive 

positive work. This can be an insightful observation 

for simulations that target motions that transition 

quickly such as leg swinging. Future work will further 

test the compatibility of negative work with walking 

controllers in hardware optimization efforts.  

TABLE 5. COMPARING EFFECTS OF TYPE OF 

WORK ALLOWED BY OPTIMIZATION 

 General Work Positive Work 

Simulation -22.20% -19.68% 

No Device -24.01% -23.38% 

Unpowered -18.93% -18.62% 

 

3.3.4 Model Complexity 

When comparing the effects of deriving a control 

strategy from a simple model (pendulum) vs purely a 

complex model (muscle model) it was found that 

complex is preferred (Table 6). This also has to do 

with the number of parameters that each control 

strategy uses. In future work it would be of interest to 

discover the threshold of where the complexity of the 

model (in terms of number of parameters) no longer 

has a defining effect on the amount of reduction. This 

can also be potentially circumvented by the use of 

optimization on a low parameter model, which 

ultimately was the objective of this study. 

TABLE 6. COMPARING EFFECTS OF MODEL 

COMPLEXITY ON MUSCLE ENERGY 

 Simple Pendulum Muscle Model 

Simulation -20.33% -22.16% 

No Device -22.58% -25.92% 

Unpowered -17.61% -21.13% 

 

4. CONCLUSION 

This work allowed for a side by side comparison 

of the implementation of discrete optimized torque 

profiles in both simulation and hardware. The 

comparison provided insight into what types of 

profiles might assist different swing frequencies 

better. This type of approach allows for versatile 

controllers that have more potential to be easily tuned 

in hardware optimization. In addition, it showed that 

general work can be beneficial for exoskeleton 

application. Future efforts will focus on experimenting 

on more subjects and optimizing the profiles in 

hardware to attempt to reduce muscle activity further.  
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