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Abstract: State estimation of hybrid dynamic systems, such as legged robots, is challenging
because of the presence of non-smooth dynamics. This paper applies the Unscented Kalman
Filter (UKF) state estimator and two novel hybrid extensions (HUKF) to a hybrid system,
the simplest walking model. These estimators are identical far from the switching boundary,
which partitions dynamic domains, but apply different time update algorithms at the switching
boundary. (1) UKF permits sigma points to propagate through the system’s hybrid dynamics.
(2) HUKF-SPG (Sigma Point Generation) generates new sigma points when the weighted
mean of the initial sigma points is on the switching boundary. (3) HUKF-SPT (Sigma Point
Transformation) transforms the sigma points forward and backward in time through the system’s
hybrid dynamics only when the weighted mean of the initial sigma points is on the switching
boundary. Results here shows that HUKF-SPG and HUKF-SPT have a lower absolute error but
modestly more computations compared to UKF. A caveat of HUKF-SPT is it can only apply to
conservative systems. HUKF-SPG is more general and could be applied to any hybrid system.

Keywords: Estimation and filtering, Hybrid and switched systems modeling, Mobile robots,
Sensing, Legged Systems.

1. INTRODUCTION

Recent advances in hardware and control techniques are
driving a fresh wave of robotic applications based on
the ability of legged systems to traverse complex terrain
(e.g., Raibert (2010)). However, state estimation for legged
systems has received less attention than system control.
The hybrid nature of legged systems involving switching
boundaries (e.g., foot striking the ground) and changing
dynamics (e.g., bipedal robot transition from single stance
to double stance) makes state estimation challenging. Im-
provement to state estimation will enable higher fidelity
control, driving increasingly more sophisticated applica-
tions in the future.

State observers can provide an estimate of the full state
based on measurements of some states. These usually work
well when sensor noise is small. Grizzle et al. (2007) have
shown if an exponentially stable feedback controller exists,
and observer error converges to zero sufficiently rapidly,
then a periodic system can be exponentially stabilized by
the controller based on the observer. When the system
is nonlinear and the noise is substantial, one can use an
extended Kalman filter (EKF) for estimation. In the EKF,
the linearization of the system dynamics and measurement
model is used for state estimation. We may use the EKF
with a kinematic model (Bloesch et al. (2013)) or a
dynamics model (Kong et al. (2021); Hartley et al. (2018))
for full pose estimation. There are two issues with the
EKF. The first issue is that the switching boundary causes
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nonlinearity in the dynamics that an EKF cannot handle.
This has been addressed by using the salted Kalman filter
(Kong et al. (2021)). Here, the saltation matrix preserves
the second moments across the switching boundary. The
second issue is that the error dynamics of the Kalman filter
are state dependent which causes convergence issues. This
has been addressed by developing an invariant extended
Kalman filter (Hartley et al. (2018)). The saltation matrix
can be combined with the invariant extended Kalman filter
to achieve a resolution of both issues (Gao et al. (2021)).

The unscented Kalman filter (UKF) is another method
for state estimation of a nonlinear system (Julier et al.
(2000)). Unlike EKF which is accurate to the first-order
linearization of the system, UKF carefully choses sampling
points, known as sigma points (SPs), to estimate the
mean and covariance which are accurate to third order
in a Taylor series expansion (Wan and Van Der Merwe
(2000)). This method is referred to as the Unscented
Transformation (UT) (Julier and Uhlmann (2004)). In this
paper, our primary contribution is the modification of the
UT within the UKF for state estimation of a hybrid system
– the Hybrid Unscented Kalman Filter (HUKF). The
HUKF is identical to the UKF unless the system reaches
the switching boundary. At the switching boundary, we
investigate three methods, one standard and two novel, to
update the filter. We present test results on the benchmark
model of walking (Bhounsule (2014)).
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Fig. 1. Illustration of the Unscented Kalman Filter time update steps; (a) standard UKF, (b) HUKF-SPG, (c) HUKF-
SPT. These differ in how the switching boundary (black vertical line, Σ) is traversed from the initial domain
(blue field, V −) to the final domain (green field, V +). (a) permits the sigma points (red dots, SPs) to propagate

trough V −, across Σ, and into V +, whereby a mean (red star, x̂) and covariance (red ellipse, P̂) are calculated.

(b) propagates SPs through V − until x̂ is on Σ, where P̂ is calculated. The reset map is applied to the x̂, new SPs
generated, and new SPs propagated through V +. (c) propagates SPs through V − until x̂ is on Σ, where each SP
is propagated to Σ in V −, reset map is applied, each SP is propagated away from Σ in V +, and transformed SPs
complete propagation in V +.

2. UNSCENTED KALMAN FILTER ALGORITHMS
FOR HYBRID SYSTEMS

2.1 System Dynamics

The complete set of equations are summarized below:

t = t0 : x(t0) = x0 (1)

t0 ≤ t < t̃ : ẋ = f−(x), S(x(t)) < 0, x ∈ V − (2)

t = t̃ : S(x(t̃)) = 0, x ∈ Σ (3)

t = t̃ : x+(t̃) = R(x(t̃)) (4)

t > t̃ : ẋ = f+(x), S(x(t)) > 0, x ∈ V +, (5)

Furthermore, the system is discretized; subscript k in-
dicates a discrete timestep tk. The system dynamics
given by Eqs. 2 and 5 are written as, xk+1 = xk +∫ tk+1

tk
f±(xk,wk)dt, where wk is discrete process noise

that is held constant between time steps. Process noise is
assumed to be normally distributed zero mean, E[wk] = 0,
with variance E[wkw

T
k ] = Q.

2.2 System Measurement

Discrete measurement equation is written as yk =
h(xk,vk), where vk is the measurement noise, and is zero
mean, E[wk] = E[vk] = 0, with variance E[vkv

T
k ] = R.

System and process noise are independent, E[wkv
T
k ] = 0.

It is assumed that there is no noise on the switching
boundary and the reset condition, w.l.o.g.

2.3 Unscented Kalman Filter Applied To Hybrid Systems

The Unscented Kalman Filter was applied to ball bouncing
on a wall by Julier and Uhlmann (2004) (pp. 415). We
adapt the same algorithm, but use the notation in Wan
and Van Der Merwe (2000) to present the pseudo code in
Table 1. The UKF has five primary steps: initialization
and generation of SPs (lines 1-4), propagation of the SPs
through the dynamics (line 5) referred to as the time
update, measurement of SPs (lines 6-8), calculation of
Kalman gain (lines 9-12), and use of the measurements
to update the state and covariance (lines 13-14).

Time updates which meet or traverse the switching bound-
ary require special management. The pseudocode for the
time update is shown in Table 2 and is illustrated in Fig 1
a1-a7. As shown in a2, when propagating from tk−1 to tk,
the ith SP crosses the switching boundary at some time t̃i,
where t̃k−1< t̃i≤ t̃k. A root finding algorithm can be used
to determine the value of t̃.

2.4 Hybrid Unscented Kalman Filter with Sigma Point
Generation (HUKF-SPG)

The Hybrid Unscented Kalman Filter with Sigma Point
Generation (HUKF-SPG) follows the same general ap-
proach as UKF (Table 1) with exception of the time update
near the switching boundary.

The pseudocode for the time update is shown in Table 3
and illustrated in Fig 1, b1-b7. As shown in b2, individual



SPs are not subject to the system’s hybrid dynamics, but
projected forward in f−(·) to some time t̃ such that the
weighted mean of the SPs at that time x̃− (line 4) lies
exactly on the switching boundary, i.e. S(x̃−) = 0. This
mean is represented graphically as a red star. As with the
UKF, a root finding algorithm can be used to determine
the value of t̃.

With mean on the switching boundary, as illustrated in
b3, the covariance P̃−

xx is calculated (line 5). Thereafter,
the SPs are discarded as shown in b4. The reset map is
then applied to the mean x̃−, resulting in updated mean
x̃+ (line 9). This is illustrated in b5 with identity reset
map for sake of clarity but w.l.o.g. The covariance then
is used to generate new SPs (line 10), as shown in b6.
Finally, as illustrated in b7, these new SPs are projected
in f+(·) from t̃ to tk, at which time the weighted mean x̂k

and covariance P̂xx are calculated.

This filter is named HUKF with Sigma Point Generation
because, as shown in b6, the mean transformed by the
reset map, x̃+, is used in conjunction with the covariance,
P̃−

xx, to generate new SPs.

2.5 Hybrid Unscented Kalman Filter with Sigma Point
Transformation (HUKF-SPT)

The Hybrid Unscented Kalman Filter with Sigma Point
Transformation (HUKF-SPT) follows the same general
approach as UKF (Table 1) except for the time update
near the switching boundary.

The pseudocode for the time update is shown in Table 4
and explained pictorially in Fig 1, c1 to c7. As illustrated in
c2, individual SPs are not subject to the system’s hybrid
dynamics, but projected forward in f−(·) to some time
t̃ such that the weighted mean of the SPs at that time
x̃− (line 4) lies exactly on the switching boundary, i.e.
S(x̃−) = 0. This mean is represented graphically as a red
star. As with the UKF, a root finding algorithm can be
used to determine the value of t̃.

With mean on the switching boundary, as illustrated in c3,
each SP, X̃−

i , is individually projected in f−(·) from t̃ to
some time t̄i (line 11) such that its resultant value, X̄−

i , lies
exactly on the switching boundary, i.e. S(X̄−

i ) = 0. Note
that for SPs which are beyond the switching boundary at
t̃, t̄i < t̃, i.e. those SPs must be projected backward in
time.

With all SPs exactly on the switching boundary, the mean
is discarded and the reset map is applied to each SP X̄−

i

(line 13), resulting in updated SPs, X̄+
i . This is illustrated

in c4 and c5. These SPs are then individually projected
in f+(·) from t̄i to time t̃ (line 15). This again requires
projection backward in time as shown in c6. Finally, as
illustrated in c7, the transformed SPs are projected in
f+(·) from t̃ to tk, at which time the weighted mean x̂k

and covariance P̂xx are calculated.

This filter is named HUKF with Sigma Point Transfor-
mation because, as shown in c3 and c6, the SPs are
transformed by the system’s hybrid dynamics.

Table 1 Unscented Kalman Filter

in: pre. estimate ˆ̂xk−1; cur. measurement yk; pre. cov.
ˆ̂Pk−1; process noise cov. Q; measurement noise cov. R;
parameters α, β, κ
out: cur. estimate ˆ̂xk; cur. cov. ˆ̂Pk

% Generate SPs (see line 15)
1: X x

k−1,Xw
k−1,X v

k−1 = genSPs(ˆ̂xk−1, ˆ̂Pk−1,Q,R, α, κ)

% Generate 2L+ 1 weights
2: W = λ/(2(L+ λ)) ∗ ones(1, 2L)
3: Wm = [λ/(L+ λ),W] ▷ for mean
4: Wc = [λ/(L+ λ) + (1−α2 + β),W] ▷ for covariance

% Time Update differs as indicated below
% UKF is in Table 2
% HUKF-SPG is in Table 3
% HUKF-SPT is in Table 4

5: x̂k, X̂k, P̂xx = time update(X x
k−1,Xw

k−1,W
m,Wc)

% Propagate SPs through measurements
6: for i=1:(2L+1) do

7: Ŷk,i = h(X̂k,i,X v
k−1,i)

8: end for

% Calculate the mean and covariance

9: ŷk =
∑2L+1

i=1 Wm
i Ŷk,i

10: P̂yy =
∑2L+1

i=1 W c
i [Ŷk,i − ŷk][Ŷk,i − ŷk]

T

% Calculate cross-covariance and Kalman gain

11: P̂xy =
∑2L+1

i=1 W c
i [X̂k,i − x̂k][Ŷk,i − ŷk]

T

12: K = P̂xyP̂
−1
yy

% Measurement update
13: ˆ̂xk = x̂k +K(ŷk − yk)

14: ˆ̂Pk = P̂xx −KP̂yyKT

15: function genSPs(ˆ̂xk−1, ˆ̂Pk−1,Q,R, α, κ)
% Initialize the augmented state and covariance

16: xa
k−1 = [ˆ̂xT

k−1,0
T
w,0

T
v ]

T ▷ 0w ∈ Rn×1, 0v ∈ Rm×1

17: Pa = diag( ˆ̂Pk−1,Q,R)

% Generate 2L+ 1 SPs
18: λ = α2(L+ κ)

19: A =
√

(L+ λ)
√
Pa

k−1 ▷ P =
√
P
√
P

T

20: X a
k−1 = [xa

k−1, xa
k−1 +A, xa

k−1 −A]
21: X x

k−1 = X a
k−1(1 :n, :)

22: Xw
k−1 = X a

k−1(n+ 1:2n, :)
23: X v

k−1 = X a
k−1(2n+ 1:L, :)

return X x
k−1,Xw

k−1,X v
k−1

24: end function

3. RESULTS

3.1 Hybrid system: The simplest walker

In this study, state estimation of a walking model known as
the simplest walker (Garcia et al. (1998)) is investigated.
The simplest walker, shown in Fig. 2, is able to walk down
a shallow ramp without any control when launched with
the correct initial conditions.

The model has a point mass M at the hip, point feet
of mass m, leg length is ℓ, gravity is g, and ramp slope



Table 2 Time Update: UKF

in: SPs of pre. state X x
k−1; SPs of pre. process noise Xw

k−1;
weight for mean Wm; weight for cov. Wc

out: cur. priori est. x̂k; cur. SPs X̂k; cur. priori cov. P̂xx

1: for i=1:(2L+1) do
% Project SPs from tk−1 to t̃

% such that (t̃ = tk and S(X̃−
i ) ≤ 0) or

% (t̃ < tk and S(X̃−
i ) = 0)

2: X̃−
i = X x

k−1,i +
∫ t̃

tk−1
f −(X x

k−1,i,Xw
k−1,i)dt

% Manage domain change
3: if (t̃ = tk and S(X̃−

i ) < 0) then

4: X̂k,i = X̃−
i

5: else
% Apply reset map

6: X̃+
i = R(X̃−

i )

7: if t̃ = tk then ▷ t̃ = tk ⇔ S(X̃−
i ) = 0

8: X̂k,i = X̃+
i

9: else
% Complete SP projection

10: X̂k,i = X̃+
i +

∫ tk
t̃

f +(X̃+
i ,Xw

k−1,i)dt
11: end if
12: end if
13: end for

% Calculate mean and covariance

14: x̂k =
∑2L+1

i=1 Wm
i X̂k,i

15: P̂xx =
∑2L+1

i=1 Wc
i [X̂k,i − x̂k][X̂k,i − x̂k]

T

φ
θ

M

l

m
m

g

γ

swing
leg

stance
leg

Fig. 2. The simplest walking model analyzed by Garcia
et al. (1998) was used to test the filter algorithms.

is γ. Garcia et al. (1998) did two simplifications: non-

dimensionalization of time with
√
g/ℓ, and analysis of the

limiting case,m/M → 0. The net effect of these two simpli-
fications is that the equations of motion have only one free
parameter, slope γ. The system state is x = [θ, θ̇, ϕ, ϕ̇]T .
The switching condition is S(x) = 2θ−ϕ. The reset map is

R(x) = [θ, {−1+cos(2θ)} cos(2θ)θ̇, ϕ, − cos(2θ)θ̇]T . The

initial dynamics are f−(x) = [θ̇, sin(θ − γ), ϕ̇, sin(θ −
γ) + {θ̇2 − cos(θ − γ)} sin(ϕ)]T . The final dynamics are

f+(x) = [θ̇ − ϕ̇, sin(ϕ − θ + γ) + (ϕ̇2 − cos(ϕ − θ +

γ)) sin(ϕ)θ̇, sin(ϕ− θ + γ)]T

The simplest walker is sensitive to the initial conditions;
random initial conditions are not able to generate feasible
walking solutions. We use fixed point analysis to generate
feasible initial conditions (see Strogatz (2018)). This is
based on the Poincaré section, an instant in the motion

Table 3 Time Update: HUKF-SPG

in: SPs of pre. state X x
k−1; SPs of pre. process noise Xw

k−1;
weight for mean Wm; weight for cov. Wc; process noise
cov. Q; measurement noise cov. R; params. α, β, κ
out: cur. priori est. x̂k; cur. SPs X̂k; cur. priori cov. P̂xx

% Project SPs from tk−1 to t̃, calculate mean x̃−

% such that (t̃ = tk and S(x̃−) ≤ 0) or
% (t̃ < tk and S(x̃−) = 0)

1: for i=1:(2L+1) do

2: X̃−
i = X x

k−1,i +
∫ t̃

tk−1
f −(X x

k−1,i,Xw
k−1,i)dt

3: end for

4: x̃− =
∑2L+1

i=1 Wm
i X̃−

i

5: P̃−
xx =

∑2L+1
i=1 Wc

i [X̃−
i − x̃−][X̃−

i − x̃−]T

% Manage domain change
6: if (t̃ = tk and S(x̃−) < 0) then

7: x̂k = x̃−, X̂k = X̃−, P̂xx = P̃−
xx

8: else
% Apply reset map

9: x̃+ = R(x̃−)
% Generate new SPs (see table 2, line 15)

10: X̃+, , = genSPs(x̃+, P̃−
xx,Q,R, α, κ)

11: if t̃ = tk then ▷ t̃ = tk ⇔ S(x̃−) = 0

12: x̂k = x̃+, X̂k = X̃+, P̂xx = P̃−
xx

13: else
% Complete SP projection

14: for i=1:(2L+1) do

15: X̂k,i = X̃+
i +

∫ tk
t̃

f +(X̃+
i ,Xw

k−1,i)dt

16: end for

% Calculate mean and covariance

17: x̂k =
∑2L+1

i=1 Wm
i X̂k,i

18: P̂xx =
∑2L+1

i=1 Wc
i [X̂k,i − x̂][X̂k,i − x̂]T

19: end if
20: end if

cycle and the Poincaré map, a function that maps an
initial condition from one Poincaré section to the next.
We choose the Poincaré section to be at the instant
after the front leg is in contact with the ground and
the rear leg is about to move, identified as the instant
after foot-strike. We assume an initial condition x0 at
this instant. Then we integrate the equations of motion
ẋ = f−(x,0) until the switching boundary is reached,
i.e. S(x) = 0. Then we apply the reset map R(x). These
steps provide the Poincaré map, M(x), such that x1 =
M(x0). Using a root finder, we search for x1 = x0 = x⋆

such that x⋆ − M(x⋆) = 0. For the free parameter,
γ = 0.009, this gives the following fixed point x⋆ =
[0.2003 −0.1998 0.4006 −0.0158] corresponding to a step
time tstep = 3.8824 (see Bhounsule (2014) for more details
and code).

3.2 Simulation and filter parameters

Only behavior of the UKF and HUKF variants about
the switching boundary is of interest in this study. For
this reason, and to reduce computational load, the sys-
tem was first initialized at the deterministic fixed point
f−(x⋆,0), and integrated forward for 3 sec. yielding the



Table 4 Time Update: HUKF-SPT

in: SPs of pre. state X x
k−1; SPs of pre. process noise Xw

k−1;
weight for mean Wm; weight for cov. Wc;
out: cur. priori est. x̂k; cur. SPs X̂k; cur. priori cov. P̂xx

% Project SPs from tk−1 to t̃, calculate mean x̃−

% such that (t̃ = tk and S(x̃−) ≤ 0) or
% (t̃ < tk and S(x̃−) = 0)

1: for i=1:(2L+1) do

2: X̃−
i = X x

k−1,i +
∫ t̃

tk−1
f −(X x

k−1,i,Xw
k−1,i)dt

3: end for

4: x̃− =
∑2L+1

i=1 Wm
i X̃−

i

5: P̃−
xx =

∑2L+1
i=1 Wc

i [X̃−
i − x̃−][X̃−

i − x̃−]T

% Manage domain change
6: if (t̃ = tk and S(x̃−) < 0) then

7: x̂k = x̃−, X̂k = X̃−, P̂xx = P̃−
xx

8: else
% Project SPs from t̃ to t̄i, such that S(X̄−

i ) = 0,
% where t̄i < t̃ if S(X̄−

i ) > 0
9: for i=1:(2L+1) do

10: % Project SP toward switching boundary

11: X̄−
i = X̃−

i +
∫ t̄i
t̃

f −(X̃−
i ,Xw

k−1,i) dt

12: % Apply reset map
13: X̄+

i = R(X̄−
i )

14: % Project SP away from switching boundary

15: X̃+
i = X̄+

i +
∫ t̃

t̄i
f −(X̄+

i ,Xw
k−1,i) dt

16: end for

17: if t̃ < tk then
% Complete SP projection

18: for i=1:(2L+1) do

19: X̂k,i = X̃+
i +

∫ tk
t̃

f +(X̃+
i ,Xw

k−1,i)dt
20: end for
21: end if

% Calculate mean and covariance

22: x̂k =
∑2L+1

i=1 Wm
i X̂k,i

23: P̂xx =
∑2L+1

i=1 Wc
i [X̂k,i − x̂][X̂k,i − x̂]T

24: end if

state x0 = [−0.0695 −0.0980 −0.3205 −0.1930]
T
. This

value was used as initial state for all trials, as only 0.9
sec. of further integration would result in the deterministic
system reaching the switching boundary. In practice, all
simulations were further integrated by 3 sec. to ensure the
switching boundary was met.

Similarly, initial estimate covariance for all trials ˆ̂P 0 was
calculated by using the UKF to estimate the state of the
deterministic system as it evolved from the fixed point to a
time of 3 sec. This instance of the filter had initial process
covariance and measurement covariance of 1e−3In, where
In is the identity matrix of size n. Noiseless measurements
were performed on the deterministic system every 0.1 sec.

The continuous system dynamics is given by xk+1 = xk +∫ tk+1

tk
f⋆(xk,wk)dt (see Eqns. 1 to 5 for more details). For

the simplest walker, the dimension of the state space is
nx = 4. We assume full state observation, yk = xk +
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Fig. 3. Simulation results: (a) Mean Squared Error for
the position, (b) Mean Squared Error for velocity, (c)
Average run time as a function of time.

vk and hence ny = 4. The simulated process and mea-
surement noise are zero mean, normally distributed, with
standard deviations σw and σv, respectively. The filters
have assumed process and measurement noise which are
zero mean, normally distributed, with standard deviations
σ̄w and σ̄v, respectively. The covariance matrices for the
filter are Q = σ̄2

wInx and R = σ̄2
vIny . Filter parameters,

α, β, κ, were set to 1e−3, 2, and 0, respectively, which are
typical per Wan and Van Der Merwe (2000).

The study here is based on 6400 simulations. Combinations
of the following values for process and measurement noise
were chosen; process noise standard deviation for simu-
lation σw ∈ [0.0 0.001 0.01 0.1], estimated process noise
standard deviation for filter σ̄w ∈ [0.0001 0.001 0.01 0.1],
and the measurement noise for simulation and filter were
assumed to be identical σv = σ̄v ∈ [0.0001 0.001 0.01 0.1].
These three standard deviations gave 43 combinations. 100
trials were simulated for each combination, resulting in a
total of 43 × 100 = 6400.

Computations were done in MATLAB 2020b on Windows
10 operating system. The processor was an Intel Core i5-
2500K CPU with speed of 3.30GHz, 4 cores, and 16 GB
of RAM. All integrations were done using ode113 with
an absolute tolerance of 10−13 and relative tolerance of
10−12. The ode113 has an in-built root finder for which
can be accessed using the ‘events’ parameters. The root
finder fsolve was used with a function tolerance of 10−12

was used to detect means meeting the switching boundary
in Tables 3 and 4.

Figs. 3 (a) and (b) shows the mean absolute error (MAE)
as a function of time for the angles and the angular
rates, respectively, for the successful trials. These errors
are computed as follows

MAE(X) =

∑N
i |θi − θ̂i|+ |ϕi − ϕ̂i|

2N

MAE(Ẋ) =

∑N
i |θ̇i − ˆ̇

θi|+ |ϕ̇i − ˆ̇
ϕi|

2N



where the difference is taken between the actual and
the estimate value and N = 5269 is the number of
successful trials (see Sec. 4 for more details on trials
which were excluded). The individual values of angle and
angular rates were normalized against the approximate
maximum value in the simulation, which is 0.4 for both
the angles and angular rates. These plots demonstrate that
all three algorithms have similar errors untill they reach
the switching boundary. This is because all algorithms are
identical up to this point. Thereafter, the UKF shows a
sharp increase in error that appears to diverge. HUKF-
SPG and HUKF-SPT show similar errors with the HUKF-
SPT performing marginally better.

Fig. 3 (c) shows the computational time for the three filters
as a function of iteration over the N = 5269 trials. All
filters have the same computational time away from the
switching boundary, as expected. At the switching bound-
ary, UKF is the least computationally intensive, followed
by HUKF-SPG and HUKF-SPT. Note that the absolute
numbers are dependent on the computational capabilities
of the system, the integrator, and the tolerances for the
integration and the root finder. In comparing their relative
magnitudes, it can be seen that HUKF-SPG and HUKF-
SPT need 2.33 and 3 times more computations compared
to HUKF, respectively.

4. DISCUSSION AND CONCLUSION

The paper presented two novel hybrid extensions of the
UKF. The two extensions are identical to the UKF
away from the switching boundary but use different time
updates near boundary. The standard UKF propagates
the SPs through the hybrid dynamics, allowing each
sigma point to reach the switching boundary at differ-
ent instants of time. The first extension, HUKF-SPG,
generates new SPs at the switching boundary once the
mean of the propagated SPs is on the switching boundary.
The second extension, HUKF-SPT, transforms the SPs
through the switching boundary based on the time that
the mean reaches the switching boundary.

We chose to discard 49 or ∼ 1% of the 6400 trials be-
cause the UKF covariance matrix ˆ̂P ceased to be posi-
tive definite. The exact cause of this not yet known. We
suspect this occurs when only some of the SPs transition
through the switching boundary, as shown in Fig. 1 a2.
In this condition, the SPs no longer represent a normal
distribution, but a mixture model of two truncated normal
distributions.

We chose to discard 1082 or ∼ 17% out of 6400 trials
because the measurement update (Table 2, line 13) caused
a hybrid transition, i.e. S(x̂k) < 0 and S(ˆ̂xk) ≥ 0 . Our
current work does not consider hybrid dynamics in the
measurement update, which we believe requires special
treatment, and is considered the focus of future work.

The UT projects SPs to estimate a normal distribution
whose mean is the estimated state. However, it is known
that the true state is not normally distributed when near
the switching boundary and, as a result, the UT becomes
less accurate. Since the UKF projects SPs via the UT
through both domains V ±, and the switching boundary
Σ, but still assumes normal distribution, it results in the

highest MAE. HUKF-SPG and HUKF-SPT do not expose
SPs to both V ± and Σ when projecting them with the
UT, and thus produce less error. A caveat of HUKF-SPT
is that it requires backward integration of the dynamics
as shown in Fig. 1 c6. This is possible for the simplest
walker because it is a conservative system. However, the
backward integration is not possible for non-conservative
system. The HUKF-SPT and HUKF-SPG require more
computational time than UKF due to need for additional
root finding.

We conclude, that of the tested estimators, both novel
extensions outperform the standard UKF at the cost
of moderately more computational time, and the results
justify further investigation. The drawback of the more
accurate HUKF-SPT is that it only works for conservative
systems as it requires backward time integration.
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