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Abstract— Heterogeneous vehicles (e.g., unmanned ground
vehicle (UGV) and unmanned aerial vehicle (UAV)) are best
suited for surveillance application over large areas. UAVs are
fast, but fuel limited, while, UGVs have a larger fuel capacity,
but are relatively slow. When UAVs are combined with UGVs
they can provide larger coverage at a relatively fast speed.
The UAV may also be recharged on the UGV as needed.
The resulting route optimization problem is computationally
complex, but may be solved relatively fast using heuristics.
In this paper, we solve for a mission route using a two-level
optimization; (1) the UGV route is assigned using heuristics
with free parameters, (2) the UAV route is solved using a
vehicle routing problem formulation with capacity constraints,
time windows, and dropped visits. However, this open-loop
two-level optimization may yield non-optimal solutions or fail
completely because of poor choice of UGV parameters. Our
primary objective is to explore closed loop optimization where
the free parameters of the UGV routes are optimized using
Bayesian optimization and Genetic algorithms. Our results
show that both methods produce good quality solutions, but
bayesian optimization is computationally more efficient than
genetic algorithm.

1. INTRODUCTION

The availability of simple-to-control and low-cost un-
manned aerial vehicles (UAVs) has opened the possibility of
practical surveillance systems [1]. UAVs can provide auto-
mated surveillance for reconnaissance, weather observations,
environment and traffic monitoring, search and rescue, and
border patrol [6]. Although UAVs are fast, they are severely
limited to relatively small area due their limited battery
capacity [25].

To increase their range, UAVs may be combined with
unmanned ground vehicles (UGVs). UGVs move slow and
are terrain limited, but are large enough to enable docking
and recharging of aerial vehicles. They may also be used to
survey locations that are accessible through the roads [7].
Thus a system consisting of heterogenous vehicles consist-
ing of UAVs and UGVs are ideally suited for automated
surveillance applications (e.g., [4], [29]).
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The use of heterogenous vehicles with different capabil-
ities makes the route selection problem more challenging
[2]. One has to consider the fuel limitations of the UAV
and the speed limitations of the UGV to device successful
routing paths. In order to push their limits, optimization
of their routes with metrics such as reducing the time
and/or the overall fuel consumption are important. In this
paper, we provide a framework for optimizing the routes of
heterogenous vehicles with resource constraints (e.g., fuel,
speed) and terrain constraints (mission spread).

We illustrate the problem using the mission scenario
shown in Figure [I] (a). The mission points are shown with
black dots. The UAV range for a single charge is shown with
a blue circle. The circle indicates that the UAV cannot visit
all mission points on a single charge. Figure |1| (b) and (c)
shows two possible solutions. In Fig. [I] (b), the UGV and
UAV move together through the path a — b — ¢. The UAV
then takes off from the UGV and travels the path f — g to
return to the UGV. Then the UGV and UAV move along d —
e to return to the starting point. Fig. (1| (c) shows an alternate
solution. The UGV and UAV move together along a. Then
the UAV takes off and its moves along e — f to return to
the starting point. The UGV moves along b — ¢ — d and
returning to the start point. If optimization criteria is UAV
fuel consumption then the strategy in (b) is better because
the UAV flies over a shorter distance. If optimization criteria
is the total time taken to complete the missions, then (c) is
better here because unlike in (b), the UGV does not have to
wait for the UAV to land back on it thus (c) takes less time
than (b). From this example, we note that the UGV heuristics,
the stop location for the UAV to take-off and the wait time
are critical based on the optimization criteria. In this study,
these parameters are optimized by the genetic algorithm and
bayesian optimization.

There has been considerable work on routing of fuel
constrained UAVs. Levy et al. [11] and Sundar et al. [23]
considered the routing of multiple fuel-constrained Un-
manned Aerial Vehicles (UAVs) with recharging on fixed
depots. Levy et al. used a variable neighborhood search based
on randomization and variable neighborhood descent based
on the gradient to search for an optimal solution. Sundar
et al. formulated several mixed-integer linear programming
(MILP) formulations and solved these using an off-the-shelf
MILP solvers. Ren et al. [18] considered a collaborative two-
UAV and one-UGV problem where the purpose of UGV as
a carrier is to deploy and retrieve the flying robots on time,
and the optimal take-off and landing points was solved using
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Fig. 2. The problem scenario. The UAV and UGV, both start from the
recharging depot. The mission points are shown with black dots. The UAV
range is shown with a blue circle.

Particle Swarm Optimization (PSO) algorithm.

Further extensions have considered routing of fuel con-
strained UAV and recharging on ground vehicles that are free
to move on prescribed paths. This is a challenging problem
because each of these vehicles have different constraints
on speed and fuel capacity. Maini et al. [12] considered
the problem of routing a single fuel-constrained UAV to
a set of missions while being recharged by stopping at a
UGV traveling on a road network. They solved the problem
using a two-stage approach. First, using the UAV range
constraints, they found a set of recharging depots. Second,
they formulated a mixed-integer linear program and solved
for the path of both the UAV and UGV. Mathew N. et al.
[13] presented a cooperative rendezvous planning of working
robots (UAV) and one or more mobile charging robots
to recharge UAVs by formulating a rendezvous scheduling
problem as a Multi Generalized Traveling Salesman Problem
(MGTSP) and then transforming it into a TSP for applying
heuristic solvers. The authors then extended this problem for
longer planning using receding horizon strategies.

We have considered extension of the problem by con-
sidering multiple fuel-constrained UAVs and a single UGV
[17]. We solved the problem in a tiered fashion. First, we

An example scenario: (a) The mission scenario. Both, the UAV and UGV start from the same starting location. The range of the UAV is shown

use K-mean clustering to create nodes for UGVs to visit
and solved for the UGV path using a traveling salesman
formulation. Second, using the UGV path, we formulated and
solved a vehicle routing problem with capacity constraints,
time windows, and dropped visits.

One of the issues using heuristics for solving the routing
problems is that the heuristics have parameters that can affect
the quality of the solution. Thus, some past work has consid-
ered tuning of the parameters to improve the solution. Huang
et. al. [10] solved a capacitated arc routing problem using
hierarchical decomposition to generate feasible solution and
then used local search. A bayesian optimization was used to
improve the parameters of the hierarchical decomposition.
Henrio et. al. [9] considered the problem of reducing the
time between consecutive visits of a series of locations to
reduce the uncertainty. They used firefly algorithm which
is based on flashing of fireflies to attract or mate with
other fireflies. A bayesian optimization was used to tune the
parameters of the firefly algorithm. Pilat [16] used genetic
algorithms to improve the parameter selection in an ant
colony optimization algorithm to solve the traveling salesman
problem.

In this paper, we extend our past work on UAV-UGV rout-
ing using heuristics [17]. We investigate the use of genetic
algorithm and bayesian optimization to improve the heuris-
tics. The novelty of this study lies in the application of the
global optimization techniques like Genetic Algorithm and
Bayesian Optimization for parameterizing different heuristics
parameters which can be used for solving combinatorial
optimization problems in a shorter period of time.This study
shows that with proper tuning of the routing parameters it is
possible to obtain a larger route coverage for tiered routing of
heterogeneous vehicles. The flow of the paper is as follows.
We present details about the optimization method in Sec. [2}
The results are in Sec. followed by the Discussion in
Sec. [} Finally, the conclusion and future work is in Sec. [5]
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2. METHODS
A. Problem statement

Figure [2] shows the problem scenario considered in the
paper. The mission points are shown with black dots. There
is a recharging depot shown as a blue circle encompassing
the solid black dot. The UAV can travel on the UGV or fly
by itself. The UAV may be charged on the UGV or the depot.
Both, UAV-UGYV have to start and end at the depot and have
to visit all the mission points.

The blue circles (radius = fuel capacity/2) of Figure
represent the range of the UAV on a full charge; the distance
that the UAV can cover is the diameter of the circle. If
the UAV starts from the center of the circle on a full
charge, it can return back to the center of the circle with an
empty charge. We have drawn two circles which are centered
approximately at (1,12.5) and (5,12). It can be observed
that from the start location, the UAV cannot travel to the
two mission points approximately at (7.5,17.5). However, if
the UAV starts from the point (5,12) with a full charge, it
can cover the two mission points and return back. To enable
this solution, the UAV would need to ride with the UGV till
(5,12), then visit the mission points and get refueled. This
illustrates some of the intricacies of choosing an appropriate
path for the UGV such that the UAV can successfully move
to the mission points at the extreme ends and increase
the route coverage. In this problem, we tried to optimally
parameterize the UGV parameters like the rendezvous points
and time periods of UAV in the UGV path with the help of
global optimization techniques.

B. Solution approach

Figure |3| shows the solution approach that involves an
outer- and an inner-level. The outer level block (light blue)
involves heuristics to choose a UGV route. The UGV route
heuristics has a few free parameters. Once these parameters
are set, the inner-level block (light orange) is the UAV
route optimization. Thus far, the UAV-UGV route selection
is open-loop since the UGV route has not been optimized.
Thus, we run an optimization on the outer loop that optimizes
the free parameters in the UGV heuristics minimizing an
appropriate cost, thus closing the loop. This outer-inner loop
optimization proceeds till the maximum iteration limit is
reached or the solution has converged. That is, there is

iterations

Overview of the algorithm

no change in the objective value. We now describe the
details of the inner-loop, the outer-loop, and the closed-loop
optimization.
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Fig. 4. Heuristics for UGV route. The UGV can make two stops on any
mission points such that the first one inside the red ellipse shown with
dashed lines and the second is inside the blue ellipse shown with dash-
dotted lines. At each stop, the UGV can choose a time to wait (e.g., to
recharge the UAV).

C. Heuristics for UGV (Outer-loop)

Our heuristics for UGV route are based on maximum fuel
range of the UAV described earlier (range is show as a blue
circle in Fig. 2). Figure ] shows the heuristics for the UGV
route. The UGV starts at the depot and travels along the
mission points as shown by the arrow. Next, the UGV is
allowed to stop anywhere in the ellipse with dashed red lines
for a prescribed time. The rationale is that in choosing a stop
and wait time is to give the UAV enough time to land and
recharge on the UGV. Next, the UGV moves to to the bottom
right side and can take another stop anywhere inside the blue
ellipse with blue dash-dot lines. We have shown two random
stop locations in each ellipse with a blue hollow circle. For
the chosen stop locations and wait times for each stop, the
UAV routing problem is formulated and solved as described
in the next section.

D. Optimizing UAV route (Inner-loop)

We formulate a Vehicle Routing Problem (VRP) with
capacity constraints to account for fuel limits, time windows



to allow for rendezvous, and dropped visits to allow the UAV
to visit some of the many vertices on the UGV path. We
constrain the UAV to a fixed speed, pre-specify the battery
capacity and service time as the UAV lands and waits on
the UGV. The set of all UGV waypoints is denoted by D =
{0,1,2,...,m}. There are n—m pre-specified mission points
which belong to the set M = {m + 1,...,n}. The set of all
vertices is then V=MD ={0,1,2,....m,m+1,...,n}.
The set of all edges denotes all possible connections between
the vertices FE = {(i,j)|i,5 € V,i # j}. Consider a
directed graph G = (V,E) where V is the entire set of
vertices V = {0,1,2,....m,m + 1,..,n} and E is the
set of edges that gives the arc costs between ¢ and j and
E ={(i,7)|i,j € V,i # j}. Let ¢;; be the non-negative arc
cost between a particular ¢ and j. In this problem, the cost
will the time traveled between two nodes ¢ and j. Let x;;
be the binary variable where the value of x;; will be 1 if a
vehicle travels from ¢ to j, and O otherwise. We formulate
the VRP problem with fuel constraints, time windows, and
dropped visits as follows.

The objective is Eq. is to minimize the total time
traveled by the all the UAVs. Constraints in Eq. and
Eq. [2.4] represents the flow conservation where the inflow
of a certain UAV should be equal to the outflow of that UAV
at any vertex among the mission vertices M. Constraints in
Eq. and Eq. denotes the optional stops the UAV
can take on the UGV vertices D, i.e., dropped visits. Next,
constraint in Eq. also represents the flow conservation
but here it is represented for start and end vertices, where the
number of UAVs leaving the start vertex must be equal to the
number of UAVs reaching the end vertex. The start vertex
and end vertex correspond to the first and last vertex of the
UGV route. The constraint in Eq. is the Miller-Tucker-
Zemlin (MTZ) formulation [15] for sub-tour elimination.
MTZ constraint takes care of the sequential visit of each
node by keeping track of values like fuel capacity, travel
time of UAV corresponding to each node. It makes sure that
if a node is visited twice, then the constraint is violated.
This constraint enables that the UAV’s energy is not fully
drained out while eliminating loops. In this constraint, L
denotes a large number. This constraint becomes active only
when there is a flow between vertices ¢ and j and drains
the UAV energy based on time taken from the two vertices.
The P4y in the constraint represents the power profile of
the UAV, which basically tells the power consumption when
the UAV travels from one node to another. In this problem,
such a power profile for the UAV is given by the following
equation.

Py ay = 0.04603 — 0.5830v2 — 1.8760, + 229.6

2.1

where v, corresponds to the velocity of UAV. In this problem,
the velocity of UAV is fixed to v, = 10 m/s.

min Y >, cija; such that (2.2)
i€V jev
Y wy=1, VjeM\D 2.3)
i€V
> wy=1, Vie M\D (2.4)
JEV
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tj =t + (si + (cijzij)) — La(1l — 245),
VieV,jeV (2.11)
th<t;<ty, VjeV (2.12)
zij=0, VieDVjeD (2.13)
zij =1— fi > Pyayey, YieV\DVYjeD
(2.14)
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Ty =1— Z T =1,
ieV\D
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s;>0,8,€Z VieV (2.21)
Q>0 Q€eR, (2.22)
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Constraint Eq. [2.9]states that if the vertex is a recharging
UGV stop, then UGV has to refuel the UAV to its full
capacity Q. Constraint Eq. is the condition that the
UAV’s fuel at any vertex in V should be between 0 and
maximum fuel capacity. Constraint Eq. 2.1T]denotes that the
cumulative arrival time at j** node is equal to the sum of
cumulative time at the node 7, ¢;, the service time at the node
1, 8;, and the travel time between nodes ¢ and j, ¢;;x;;. Here
Ly denotes a large number which helps to eliminate sub-tour
constraints similar to Eq. 2.8] The s; in our problem is a
decision variable in cases when the UAV travels from a refuel
node. That is, the service time is basically the recharging
time when it travels from a refuel node. In our problem, the
recharging time depends on the existing charge present in the
UAV. That is, if the fuel level is low it will take more time



to recharge. Hence, the profile of the power transfer from
UGV to UAV should be taken into account based upon the
fuel level present in UAV. A first order approximation of the
battery recharge rate, P, is given by:

10.8: E <2704 KJ
7_:{3 0.8; E<270.4 kJ, 224

17.9(287.7 — E); 270.4 < E < 287.7kJ.

where E represents the existing energy level on the UAV
when it docks to recharge. The power transfer uses constant
current until 94% of the battery capacity, with a 3.5C charge
rate. After 94% capacity, it switches to a constant voltage
charge. And from the existing fuel level on UAV and comput-
ing this battery recharge rate, when the UAV is charged to its
maximum capacity, we would get the recharging time of the
UAV. Constraint Eq. [2.12) is the time window constraint that
tells the vehicle to visit a certain vertex in the specified time
window for that node. In this problem, the mission nodes
are not constrained by time as the UAVs have the liberty to
visit those mission points that benefits them according to the
travel of UGV. This means that whenever UAV needs to get
refueled, it would be easier for it to go to the UGV to refuel.
Constraints Eq. [2.13] restricts that the two consecutive visits
made by the UAVs should not be consecutive UGV stops.
Constraints Eq. - Eq. represents the indicator
constraints where the constraints to the right side of the arrow
should hold if the binary decision variable z;; is equal to 1.
If ;5 is equal to zero, then the constraints to the right side of
the arrow may be violated. The constraint in Eq. tells
that if there is travel from any mission vertex ¢ to the UGV
vertex 7, then fuel level at the i*" node should be atleast equal
to the energy consumed by the UAV when it travels from
to j. Constraint in Eq. [2.15]tells that if there is travel from
the UGV vertex ¢ to any mission vertex j, then the fuel level
at the 7*" node should be the maximum fuel capacity of the
UAV as it is recharging to its full capacity at the UGV stop.
The constraint in Eq. [2.16|makes sure that if any UAV comes
to the refuel vertex to recharge, then there must exist an arc
between that refuel node and a mission node to maintain the
flow conservation. Constraint in Eq. denotes that there
should not exist any flow once the vehicle has reached the
end node m. Eq. [2.I8]is a binary decision variable that is
responsible for flow between the edges. Eq. [2.19] represents
the continuous decision variable that monitors the fuel level
at any node and has zero as the lower bound value. Eq.
represents the integer decision variable that computes
the cumulative time of UAV’s route and has zero as the lower
bound. Eq. [2.21] denotes the service time at the respective
nodes, which is a positive integer with a lower bound equal
to zero. Eq. represents the maximum fuel capacity of
a UAV Finally, Eq. denotes the large numbers used
in the constraints Eq. [2.8) and Eq. The above Mixed
Integer Linear Programming (MILP) formulation for UAV
routing can be solved using solvers like Gurobi Optimizer
[8]. For each set of UGV routing parameters, it takes a lot
of time to obtain the corresponding optimal UAV routing
solution using this solver. Hence, the authors resorted with

Fig. 5. Move operators using in Constraint Programming [3]

other solving methods that gave quality inner-level solutions
in a shorter period of simulation time.

Apart from UAV, the UGV has has a certain limit on its
fuel capacity. The power curve for the UGV in this work
follows the following equation [2.25] where UGV velocity v,
is in m/s and power is in watts. And irrespective of the nature
of power profiles for UGV and UAV, this formulation helps
to find the appropriate optimal solution for this co-operative
vehicle routing problem. In this study only the kinematics
model of the UAV and the UGV was considered.

Pygyv = 464.8v, + 356.3 (2.25)

E. Solution using Constraint Programming (CP)

We used Google’s OR-Tools™for implementation of the
heuristics to generate the results in this paper [5] mainly
for its speed of solution. Whereas Genetic algorithm and
Bayesian optimization were implemented through manual
Python programming for optimal tuning of the heuristics
parameters in order to improve the solution quality.OR Tools
uses Constrained Programming (CP) [19], [20] to solve TSP
and VRP problems. Constraint programming or constraint
optimization is a tool for solving hard combinatorial opti-
mization problems by searching for solutions that satisfy a
list of constraints.



OR-Tools™uses a search tree, local search, and meta-
heuristics to find feasible and, subsequently, the most optimal
solutions. At the heart of OR-tools™is a CP-SAT solver [5].
The solver uses DecisionBuilder that has as its input, the
decision variables, rules to choose the next variable to assign
a value, rules for choosing the value to assign to the variable.
Using the DecisionBuilder, we use the Path Cheapest Arc
strategy to find an initial feasible solution (see algorithm
in [24]). Starting with the “start” node, the decision builder
connects the node that has the shortest distance from the
previous node and iterating till the end. While doing the
connections, it checks the feasibility of the solution.

Then OR-Tools™uses a local search to find the best
solution in the neighborhood of the current solution.

This local search proceeds by a move operator that rewires
the nodes and checks for feasibility and cost. These moves
are repeated until a termination criteria, such as no improve-
ment of the objective. There are 5 move operators. These are
listed next and shown in Fig. E] and is taken from [3].

1) 2-opt interchanges the sub-part of a tour by removing
two arcs, and then connects them interchangeably so
that the objective value gets reduced.

2) Or-opt moves the sub-part of a tour if there are a
maximum of 3 contiguous visits to that sub-part of the
tour.

3) Relocate connects a visit of one tour to another tour
if the reduction in objective value is seen.

4) Exchange involves swapping two visits between each
other from either the same tour or two different tours.

5) Cross involves exchange of a visit at the end of one
to another tour. The difference between Exchange and
Cross is that the Exchange move can be done in any
part of tour/tours, but Cross can be done only to the
end portions of two tours.

In order to escape a local optimum solution, OR-
Tools™use Guided Local Search (GLS) meta-heuristics
[26].In GLS, we add a penalty term to the objective function
O leading to an augmented objective O’ function. The
penalty term is dependent on the neighborhood of the solu-
tion = through a set of features F'. The augmented objective
function is [3]

O'(x) = O(x) + XY _ filz)pic;

ieF

(2.26)

where the indicator function for the corresponding feature ¢
that belongs to F' is f;. We define f;(x) = 1, if the feature
1 is in solution or O otherwise. Also, A is the penalty factor
that can tune the search for the solutions. For example, a
larger A increases the diversity of the solutions (also see
[27]), p; is the number of times the particular feature ¢ has
been penalized, and c¢; is the cost for the feature f;. Using the
augmented objective O’ increases the cost of the objective
with respect to the neighborhood, thus enabling the solver to
get unstuck from a local optimum solution. Subsequently, a
local search is used to continue the search.

Algorithm 1 Genetic Algorithm
Input: Population size, n; Maximum generations, M AX
Output: Global best solution
1: Generate initial population of n chromosomes randomly;
2: Set the current generation g = 0;
3: while g < MAX do

4: if g =0 then

5: Compute the fitness value for each chromosomes;

6: Increment the current generation g by 1;

7. else

8: Select a pair of chromosomes from the initial or
old population based on fitness;

9: Apply crossover operation on selected parents;

10: Apply mutation operation on produced offspring
with a mutation probability;

11: Replace initial or old population with newly gen-
erated population;

12: Compute the fitness value for each chromosomes;

13: Increment the current generation g by 1;

14:  end if

15: end while

F. Optimizing the parameters of the UGV heuristics

We have optimized the UAV route for a pre-selected UGV
route. It is clear that changing the UGV route will change the
UAV solution and consequently the optimum. In this section,
we are interested in a closed-loop optimization where we
would like to optimize both, the UGV and UAV solutions,
thus achieving better solution. We choose 6 parameters in
our UGV heuristics; the x- and y-coordinate of each of
the two stop locations and the wait times at the stops. We
use genetic algorithm and bayesian optimization to optimize
these 6 parameters.

1) Genetic Algorithm : Genetic algorithm is a metaheuris-
tic inspired from the process of natural selection in nature.
It is an effective method to solve for global optimization
problems where the objective function could potential have
multiple local optimal solutions [28].

Algorithm [1| describes the workflow of the Genetic al-
gorithm. In our problem, the population in each generation
basically consists of the parameter set, in which each indi-
vidual of the population is a list of parameters that constitute
the UGV route and each parameter value in the parameter
list are encoded to form genes. The genes, which are the
encoded version of the parameters, are concatenated together
into a single string to form an individual of the population. In
technical terms, those individuals of the population are called
chromosomes. We use binary encoding for gene encoding
as it helps in improving the diversity of the solutions. We
use Latin Hypercube Sampling (LHS) to sample the initial
population. LHS is a sampling technique that is not purely
based on random sampling, but mimics some structure in
randomness. That is, LHS has a memory of previously sam-
pled points and the same sample points or same combination
of points are not sampled again unlike random sampling,
where repeated sampling of same points can happen. LHS



mimics the distribution of the data and provides an efficient
sample [14]. Once the initial population is formed, the
fitness function, which is the objective function is computed
for each individual. The individual in the population with
better fitness are carried forward to the next generation.
This is called elitism and it ensures that solutions with
better fitness values will be retained. These solutions with
then participate in a selection process to further improve
the fitness. Thus process is repeated iteratively to improved
the fitness till there are no more improvements indicating
convergence. Selection process is carried on to select two
individuals (parents) from the previous generation to produce
offsprings for the next generation. We use a technique called
Tournamentselection for selecting the chromosomes as it
performs better than other techniques in terms of algorithm
workflow, convergence rate and time complexity [21]. In this
selection, two individuals to be compared are picked from the
population and the individual with the best solution amongst
the two will be chosen as a parent for the crossover operation.
In order to extend the possibility of obtaining a global
optimal solution, a variant in tournament selection called
unbiasedtournamentselection is introduced as it elimi-
nates the loss of diversity related to the failure of random
sampling for tournament selection [22]. Instead of picking
two individuals at random for comparison, the individuals
are picked in a particular order viz., permutation and then
compared. The two next steps are the crossover and mutation
operations, help to improve the solution search space which
helps achieve a global optimum. In crossover operation, the
selected pair of parents are mated at a randomly chosen
crossover points to produce offsprings. For this problem, 2-
point crossover operator is used to produce two offsprings
from the parents. After performing the crossover operation,
the mutation operation is performed in which a random bit
of the offspring’s chromosome is flipped or mutated if the
probability of the random bit exceeds a certain probability
value to impart diversity in the solution. This diversity en-
ables the solution to escape the local optima. The probability
of the random bit is taken from the uniform distribution. For
this problem, the mutation operator value of the GA is set
to be 0.01. The GA algorithm is terminated if there is no
improvement in the solution, indicating convergence or when
the maximum iteration limit is reached.

2) Bayesian Optimization: Bayesian Optimization is a
powerful tool for optimizing computationally expensive ob-
jective function. Mathematically, bayesian optimization acts
as a global optimizer of a blackbox function f(x): z* =
argminf(x), where X is the region of interest for finding

thgegptimal solution. Bayesian optimization uses a proba-
bilistic model (surrogate model) f(.) based on given prior
distribution D,, = [(x1, f(x1)), (2, f(x2)), ...(Tn, f(xn))]
for analyzing its posterior belief at the unexplored input
regions. The performance of Bayesian Optimization depends
significantly on the acquisition function which balances
between the exploitation and exploration of the predictive
surrogate model f(.) to list out the most promising points z ™

Algorithm 2 Bayesian Optimization

Input: sampling points D,,, Maximum iterations k

Qutput: Global best solution

: Make g(x) surrogate model on D,,;

for k=1,2,..., do
obtain x,; by optimizing acquisition function «
Tny1 = argmax a(g(x)), Ynt1 = f(Zn41)
update Dy, 41 = [Dy, (Tnt1,Yn+1)] 3
update g(x) on D, 11

end for

: Find z* = argmin g(x),y* = f(a*)

X DDA RN

in its domain X and evaluates the objective at these points,
f(z™). Next (7, f(zT)) is added to the prior distribution
of the surrogate model f(.) and consequently the posterior
distribution is updated. This process is continued iteratively
till the solution converges to its optimum value or when
maximum iteration limit is reached.

Algorithm [2] shows the pseudo code for Bayesian Opti-
mization. Bayesian optimization has two major blocks, first
is the surrogate model g(z) which approximates the objective
function f(z) based on the sampling points D, and the
second, the acquisition function a which helps to evaluate
the important points (2,41, Yn+1) in the posterior. We have
used Gaussian prior as the surrogate model and Expected
Improvement (EI) for the acquisition function. Suppose,
GP(f(%),s%(z)) is the surrogate model on f(z) and foin
is the minimum value of the objective functions among
[f(x1), f(x2),...f(x,)] for n given values of [x1,xa, ...2y].
The improvement I(z) of f(Z) on unexplored points Z is
defined as

f(@),0)

Thus, Expected Improvement (EI) acquisition function is the
expectation (average) of the variable I(x) over f(z) defined
as below:

E(I(z)|f(z)) = Elmax(fmin — f(2),0)[f(z)]
_ L :% fmin - f(i’)
fmin - )

f(2)
s(x)

The point with maximum EI is chosen as the point of
interest to update the prior D,,y; and the surrogate model
g(x). The process is continued till the maximum iteration k
is reached when we get the optimal point (z*,y*) from the
Bayesian Optimization.

I(x) = max(frmin — (2.27)

+ s(z)o(

3. RESULTS

We present results for the scenario shown in Fig [2] The
UAV-UGYV have to start and end at the Depot. The mission
points are shown by black dots. All missions point needs
to be covered by either the UAV or the UGV. The UAV
can recharge at the Depot or at the UGV. The UAV and
UGV velocities when moving are fixed at 10 m/s and 4 m/s



Parameter Range

UGV stop 1 location (km,km) (6.90,18.04) to (9.80,9.07)

UGV stop 2 location (km,km) (8.64, 9.77) to (16.96,1.45)

UGV stop 1,2 wait times (min) 2 to 60

TABLE I
PARAMETER SET AND THEIR RANGE FOR GA/BO OPTIMIZATION

Parameter GA Values BO Values

UGV stop 1 (km,km) (4.99,11.65) (6.10,10.80)

UGV stop 1 wait time (min) 18 50

UGV stop 2 (km,km) (16.96,1.45) (16.96,1.45)

UGV stop 2 wait time (min) 3 245
TABLE II

OPTIMAL PARAMETERS AFTER GA/BO OPTIMIZATION

respectively. The UAV and UGV fuel capacity are 287.7 kJ
and 25.01 MJ respectively.

The heuristics for the UGV are depicted in Fig. fi] There
are 6 free parameters for the UGV optimization. Four for
the x- and y-stop locations (stop 1 and stop 2) of the UGV
and 2 wait times. Table [[] shows the ranges for both these
parameters. The objective function is to minimize the total
time to visit all mission points.

We used Python 3 for the optimizations (GA/BO/OR-
Tools) performed the computations on a 3.7 GHz Intel Core
19 processor with 32 GB RAM on a 64-bit operating system.

Table [II] gives the optimal parameter set computed by
GA/BO. The UGV 1 stop locations are slightly different
but the wait times are substantially different. The UGV stop
2 locations and times are identical; the stop 2 corresponds
to the far right corner of the missions. These results are
discussed in detail later in this section.

Table compares the key metrics between GA and
BO optimizations. The objective of the optimization was to
reduce the total time. Both optimization gave similar results
with BO being marginally better than GA by 3 min. GA
needed 3 times more local-search optimizations and took 6
times more computational time than BO. Thus, BO has more
computational efficiency than GA. The UGV results show
that GA and BO had similar times, energy consumed, but
the UGV travel more more mission points in GA rather than
BO. The UAV results show substantial difference between
the two methods. The travel time, energy consumed in BO
are about 1.5 times higher. This is because the BO travels
to 3 more mission points than GA.

Figure [6] and [7] shows the optimum route produced by GA
and BO respectively. The main difference between the two
solutions is in the UAV route. In GA, the UAV visits the

Metrics Genetic Bayesian
Algorithm Optimiza-
(GA) tion (BO)

Total time (min) 225 222

Total local-search optimizations 180 60

Computational time (min) 90 15

UGY results

Travel time (minutes) 225 222

Energy consumed (MJ) 23.13 24.86

Mission visited 37 34

UAV results

Travel time (minutes) 65 103

Energy consumed (kJ) 575.25 804.905

Recharging stops on UGV 1 2

Recharging stops on Depot 0 0

Missions visited 9 12

TABLE III

COMPARISON BETWEEN GA/BO ON METRICS FROM THE OPTIMAL
SOLUTION.

missions further away from the intersection of the branches
as shown in Fig @ a), b), and c) then recharges on the UGV,
completes the remaining missions as shown in d) and goes
to the start. In BO, the UAV visits the missions closer to the
intersection of the branches as shown in Fig [/] a), b), then
recharges once on the UGV. Then the UAV visits the top
most mission points as shown in c) and d) then recharges
a second time on the UGV. Finally, the UAV completes the
remaining missions as shown in e) and f). Thus, it can be
observed that the order of choosing the mission points in
BO increases the travel time of UAV. However, since the
UGV is the slower of the two vehicles, the travel time of the
UGV determines the total time taken to cover all mission
points. Since the UGV travel is almost the same except for
the slightly more wait time for the UAV to return back in
the BO solution, the difference in the objective is only 3
minutes.

4. DISCUSSION

In this paper, we presented a framework for optimizing
routes of heterogenous vehicles, a UGV and UAYV, with fuel
constraints. The key idea is to solve the problem in a tiered
fashion. First, we use heuristics to decide the UGV route.
Second, we optimize the UAV route using a local search. We
identify key parameters in the UGV heuristics and optimize
them iteratively with UAV route using genetic algorithm and
bayesian optimization. Starting from an infeasible solution,
both algorithms are able to give solutions with similar cost,
but different solutions.

Our objective was the time taken to visit all the mission
points. Both GA/BO gave almost the same time. However,
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Fig. 6. Solution produced by Genetic Algorithm. The plots show the UAV and UGV route at different time spans.
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Fig. 7. Solution produced by Bayesian Optimization. The plots show the UAV and UGV route at different time spans.

the individual UAV solutions were quite different. The UAV  travel time (as it was the slower vehicle) and the UGV travel
for the BO used more energy and travelled for more time. route were similar, the overall cost was the same. If the UAV
However, since the total time was dependent on the UGV  time, energy, and other metrics are important then they can



be added to the cost function using a weighted sum.

Bayesian optimization was more efficient than Genetic
algorithm in the number of function evaluations and compu-
tational time. BO is designed for computationally expensive
function evaluations hence it is ideal in such cases where it
takes substantial time to compute a solution by doing a local
search for the UAV route.

One of the main limitations of the work is that UGV
heuristics are limited to only 6 parameters which restricts
the solution space. Adding more parameters will potentially
make the search space too large and computationally restric-
tive. Another limitation is that the parameters and their range
for the UGV heuristic optimization had to be chosen by trial
and error.

5. CONCLUSIONS AND FUTURE WORK

We conclude that a tiered optimization is a feasible method
to solve heterogenous vehicles optimization where the solu-
tion of one vehicle needs to be performed before the other
one. In our case, the UGV route needs to be determined first
as the UAV route involves refueling on the UGV. Moreover,
by suitably parameterizing the heuristics and optimizing
the parameters with global optimization methods enables
exploration of the space and provide good quality solutions.

Our future work would explore both these optimization
methods with different routes, different costs, and different
heuristics in order to make broader claims about validity of
the proposed approach. And moreover, since this research
work addresses a problem-solving based approach where the
authors focus on solving the problem that is given in hand,
the algorithm that was developed focuses on solving prob-
lems with scenario maps that are similar to the scenario used
in this work rather than focusing on comparing this algorithm
to benchmark instances in the literature. Future works will
deal with testing this algorithm on various scenarios in order
to ensure the robustness of the algorithm.
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