
Noname manuscript No.
(will be inserted by the editor)

Coordinated route planning of multiple fuel-
constrained unmanned aerial systems with recharging
on an unmanned ground vehicle for mission coverage

Subramanian Ramasamy† · Jean-Paul F.
Reddinger‡ · James M. Dotterweich‡ ·
Marshal A. Childers‡ · Pranav A.
Bhounsule †

Received: date / Accepted: date

Abstract Small Unmanned Aerial Systems (sUAS) such as quadcopters are ideal
for aerial surveillance because of their runway independence, terrain-agnostic ma-
neuverability, low cost, and simple hardware. However, battery capacity con-
straints limit the effective range and endurance of sUASs, requiring human in-
tervention to replace batteries or perform manual recharging for longer opera-
tions. To increase their range, an Unmanned Ground Vehicle (UGV) may provide
recharging depot as needed. The problem is then to find optimal paths for the
UGV and sUASs to visit mission points and sUAS-UGV rendezvous points for
recharging. We present a three-tiered heuristics to solve this computationally hard
combinatorial optimization problem: (1) K-means clustering is used to find UGV
waypoints, (2) a traveling salesman formulation (TSP) is used to solve the opti-
mal UGV route, and (3) vehicle routing problem formulation (VRP) with capacity
constraints, time windows, and dropped visits is used to solve for sUAS routes.
We use constraint programming for optimization of the TSP and VRP, achieving
a solution for 25 mission points and up to 4 sUASs in about a minute on a stan-
dard desktop computer. We also found that constraint programming solvers are
7 − 30 times faster, but 4 − 15% sub-optimal compared to mixed-integer solvers,
which provide exact solutions. Further, we used constraint programming solvers in
a Monte-Carlo approach to evaluate the role of mission spread, number of clusters,
and number of sUASs on the optimal solution. Our contribution is the development
of heuristics for route selection of sUAS-UGVs that produces high quality solutions
as more mission points and sUASs are added without substantially increasing the
computational time.
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1 INTRODUCTION

Aerial vehicles such as quadcopters are ideally suited for missions such as surveil-1

lance, reconnaissance, environment and traffic monitoring, search and rescue, and2

border patrol [8]. Their relatively low cost, simple hardware, runway indepen-3

dence, and terrain-agnostic maneuverability enables one to deploy several small4

Unmanned Aerial Systems (sUASs) for large-scale area coverage [2]. However, a5

key bottleneck is their limited battery capacity, which typically restricts them to6

about 15− 20 minutes of flight time [29].7

The flight time and subsequently the coverage area of sUASs can be increased8

by having several recharging depots spread across the area [17]. However, in non-9

urban environments (e.g., rural areas) and in hostile environments (e.g., battle-10

fields) it would be expensive or tactically impossible to have recharging depots11

placed in advance [6]. A viable alternative is to have multiple sUASs recharge on12

multiple Unmanned Ground Vehicles (UGV) that can provide sUAS recharging:13

when the sUAS is low on fuel it coordinates with the UGV to find a rendezvous14

point, lands on the UGV, recharges itself, and continues the mission.15

Given a set of mission points, the number of sUASs, and the fuel-constraints16

and other constraints on the speed and service time, the problem is to plan an17

optimum route (e.g., minimum distance) for the sUAS and the UGV such that all18

mission points are served and the sUASs never run out of battery charge. This is a19

combinatorial optimization problem that is non-deterministic polynomial time or20

NP-hard. Such problem can be solved in finite time by designing heuristics that are21

problem dependent. This paper presents heuristics for planning the route of the22

UGV and sUAS to achieve coordinate route planning while minimizing a suitable23

objective (distance travelled by the sUASs) and meetings mission constraints (e.g.,24

fuel constraints, service time constraints, vehicle speed constraints).25

Khuller et al. [11] were the earliest ones to solve vehicle routing problem with26

fuel constraints. They considered the problem of finding the cheapest route for a27

fuel constrained vehicle with a set of fueling stations, each with a different fuel28

price. They used a dynamic programming (DP) formulation to solve the problem.29

Kannon et al. [10] considered the problem of finding the route of a fuel-constrained30

aircraft to visit a set of waypoints with a set of aerial recharging waypoints. They31

compared a mixed-integer linear programming (MILP) formulation with a DP32

formulation and found that DP outperforms MILP.33

Levy et al. [13] and Sundar et al. [27] considered extensions to multiple fuel-34

constrained Unmanned Aerial Systems (sUASs). The goal here was to minimize the35

distance travelled by multiple fuel-constrained sUASs to visit a set of waypoints36

once and recharge on ground-based recharging depots. Levy et al. used a variable37

neighborhood search based on randomization and variable neighborhood descent38

based on the gradient to search for an optimal solution. Sundar et al. formulated39

several mixed-integer linear programming (MILP) formulations and solved these40

using an off-the-shelf MILP solvers. Similar to these works, Bung Duk Song et al.41

[26] considered a multiple heterogeneous sUAS path planning problem in which42

automatic Logistics Service Stations (LSS) are used for sUAS fuel replenishment.43
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Younghoon Choi et al. [33] implemented a new Coverage Path Planning (CPP)44

problem for solving the routes of a fleet of sUASs with energy constraints. The45

authors’ novelty comes in formulating a column generation approach to deal with46

non-linear energy consumption, where traditional arc-based optimization approaches47

do not accurately estimate such function.48

Radzki et al. [20] proposed a robust approach to delivery planning of small49

Unmanned Aerial Systems (sUAS) for disaster relief missions. The authors formu-50

lated an algorithm for planning of the routes of sUASs such a way that it ensures51

the proper execution of a certain delivery mission irrespective of any change in the52

weather conditions.53

Andrew et al. [12] solved a two-tier route optimization problem of homoge-54

neous sUASs and repair vehicles for network exploration and failure repair. Their55

problem first solves for the optimal route of sUASs to explore the potential failure56

locations followed by the optimal route of repair vehicles to address the failure57

regions located by the sUASs.58

Andres et al. [1] proposed a novel approach for global path optimization of59

sUASs by combining Traveling Salesman Problem and continuous optimal control60

formulations where the latter takes the sUAS dynamics and constraints into con-61

sideration. Sung et al., addressed the optimal zoning problem of Unmanned Aerial62

Vehicles using Genetic Algorithm to optimize package delivery services.63

Maini et al. [15] considered the problem of routing a single fuel-constrained64

sUAS to a set of missions while being recharged by stopping at a UGV traveling65

on a road network. They solved the problem using a two-stage approach. First,66

using the sUAS range constraints, they found a set of recharging depots. Second,67

they formulated a mixed-integer linear program and solved for the path of both68

the sUAS and UGV. We consider an extension of the problem considered by Maini69

et al. These extensions are: we consider multiple fuel constrained sUASs, we use70

an off-road UGV, both of which add complexity to the problem as we need to plan71

the path of the UGV, the recharging points for the sUASs, and the paths for the72

sUASs.73

We list some other works that are related to sUAS-UGV coordination in other74

settings and/or use clustering approach.75

Manyam et al., [16] solved the problem of cooperative routing of sUAS-UGV76

to visit a set of mission points while being within a radius of each other to enable77

communication. They cast the resulting problem as a mixed integer programming78

problem and solved using a custom-written branch-and-bound algorithm. Petitprez79

et al., [19] considered deployment of sUAS and UGV such that the UGVs pick up80

sUASs that have land on fixed locations after visiting mission points. The objective81

was to minimize the operational cost while maximizing the inspection performance,82

a contradictory set of objectives that are solved using multi-objective optimization83

using genetic algorithms and capacitated arc routing problem. Their problem did84

not have a temporal aspect to it. Liu et al., [14] considered the problem of choosing85

recharge stations and flight routes for sUAS to visit given mission points. They86

cast the problem as a binary optimization problem, but solved it using heuristics87

that first cluster the mission points and then use local searches to solve for a88

path. Bard et al. [3] considered the problem of clustering a set of customers into89

zones such that a single vehicle can serve all the zones while meeting delivery and90

pick-up times. Since the pickup and delivery schedule is random, a probabilistic91

traveling salesman problem is formulated and solved using heuristics that break92
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the problem into two parts, solve them individually, and then connect back to93

form the complete solution. Dondo et al., [5] used clustering approach to solve94

a heterogeneous fleet vehicle routing problem with time windows. Initially, the95

customers are clustered of customers based upon node locations, load, and time96

windows. Then vehicles are assigned to the cluster followed by their sequencing.97

Finally, the nodes within the cluster are ordered and arrival times are computed.98

They used a standard mixed integer linear programming formulation which was99

solved using branch and bound.100

Multiple past researchers have considered the path planning of fuel-constrained101

sUASs with fixed recharging stations. However, changing to a mobile recharging102

station, a UGV in this case, adds a significant complexity to the problem. The103

reasons are two-fold; one, the UGV path has to be planned and two, the sUAS-104

UGV path is coupled. Our scientific contribution is the development of heuristics105

to plan the UGV path and then use local search methods to compute sUAS paths106

that ensures all constraints are met. Our heuristics enables us to decouple the107

problems to an extent. It also enables us to add more sUASs or mission points108

without substantial increase in the computation time.109

Our main contribution is the solution of a relatively complex sUAS-UGV route110

planning problem using heuristics.111

1. We formulate a novel three-tier optimization: 1) K-means clustering to fix112

UGV waypoints; 2) UGV route selection using a traveling salesman problem113

formulation (TSP); and 3) sUAS route selection using a vehicle routing prob-114

lem formulation (VRP) with capacity constraints (to enforce fuel limits), time115

windows (to enable rendezvous with the UGV), and dropped visits (to allow116

sUAS to visit the UGV at some locations and not all).117

2. Use of OR-tools provides high quality solutions in relatively short times; we118

solved upto 25 missions point, 1 UGV and 4 sUASs in about 60 seconds119

We solve TSP and VRP using constraint programming within Google’s OR-120

ToolsTMframework [7]. The novelty of our work compared to previous work is121

the formulation of heuristics to solve the coupled route planning problem that122

includes multiple sUASs, fuel constraints, and travel and service constraints. Our123

earlier work showed limited results on an example scenario involving 25 mission124

points [23]. We expanded the current version to include 960 optimizations that125

cover a range of mission distributions, number of sUASs, and cluster size. Our126

heuristics enable us to achieve optimal solution under a minute on a standard127

desktop computer. This opens up the possibility of real-time optimization during128

practical implementation.129

The rest of the paper is organized as follows: Section 2 introduces our coordi-130

nated sUAS-UGV routing problem, followed by the formulation for optimizing the131

ground vehicle route and aerial vehicle routes in a tiered fashion and the solution132

approach to solve such problem. Section 3 presents the results obtained from solv-133

ing such multi-tiered problem. Section 4 discusses the limitations present in our134

model and how those will be addressed in the future research. The paper concludes135

with Section 5.136
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Fig. 1 An overview of the problem and proposed solution: An example scenario is shown in
(a). The problem is to get a pre-specified number of sUASs to travel over a set of mission points
(shown by crosses). Due to fuel constraints, a single sUAS cannot cover all mission points and
hence needs fuel depots which are provided by a moving UGV whose route also needs to be
planned. A three-tiered solution is proposed. (b) Tier 1 - Find the centroids of the mission
points using K-means clustering, (c) Tier 2- Use a traveling salesman problem formulation to
plan the UGV route, and (d) Tier 3 - Use a vehicle routing problem formulation with time
windows, capacity constraints, and dropped visits to plan the sUAS route.

2 METHODOLOGY137

2.1 Overview of the problem and its solution138

The overall objective is to plan the path of K fuel-limited Unmanned Air Vehi-139

cles (sUASs) to pre-specified mission points while minimizing the total distance140

travelled by all sUASs. The sUASs may be recharged by docking on a single Un-141

manned Ground Vehicle (UGV). The path of the UGV and sUAS-UGV rendezvous142

locations also needs to be computed. Fig. 1 (a) illustrates a typical scenario. The143

mission locations (black cross marks) and the starting point (‘start’) of the UGV144

and sUAS are pre-specified.145

There are several constraints that need to be met. The velocity of the sUAS146

is fixed and the velocity of the UGV is bounded. The sUAS battery capacity is147

fixed, while the UGV has unlimited fuel. Since the velocity is constant, the battery148

capacity of the sUAS is assumed to be directly proportional to the flight time. The149

sUAS is assumed to dock on a stationary UGV during recharging and recharge150

to full battery capacity. Both UGV and sUAS are stationary during recharging of151

the sUAS. The recharging time of the sUAS is constant and is independent of the152

remaining battery capacity.153

We solve the problem in a tiered fashion: first we solve for the UGV route by154

formulating and solving a traveling salesman problem and then the sUAS route155

using vehicle routing problem formulation. Fig. 1 (a) shows the mission points156

(crosses) and the start location for 2 sUASs and a single UGV. Because the sUASs157

are fuel-constrained, they are unable to travel to all mission points. Thus, the158

UGV path has to be planned so that it can provide recharging depots. As shown159

in Fig. 1 (b), we use k-means clustering to find centroids for the mission points160

(circle with a cross and a dot). Next, as shown in Fig. 1 (c), we use a traveling161

salesman problem formulation to solve for the UGV route (blue dashed line) using162

the centroids as nodes. We add more waypoints to the resulting path (black dots).163

Finally, we formulate and solve a vehicle routing problem with capacity constraint164

(to ensure we meet fuel constraints), time windows (to enable rendezvous with165

the UGV), and dropped visits (to enable sUAS to drop visiting some of the UGV166
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Algorithm 1 K-MEANS ALGORITHM

Input: k, [x1, x2, ..., xn];
1: Randomly place k centroid points c1, c2, ..., ck
2: while not StoppingCondition() do
3: for each observation xi do
4: evaluate nearest centroid point cj by evaluating

Euclidean distance min D (xi, cj);
5: Assign observation xi to the nearest centroid j;
6: end for
7: for each do cluster j = 1, 2, ..., k
8: recompute cj = 1

nj

∑
xi→cj

xi;

9: end for
10: end while

nodes). Thus, we can obtain the path of the 2 sUASs, including their recharging167

spots on the UGV (orange square with black dot). Although we chose 2 clusters168

for the k-means and 2 sUASs, it is unclear if this is the best choice. Hence, we vary169

the number of clusters and sUASs and re-solve the problem to find their optimum170

numbers for different spread or density of mission points.171

2.2 Problem Formulation172

We follow a three-tiered approach. First, we solve for waypoints for the UGV using173

k-mean clustering (Sec. 2.2.1). Second, we solve for UGV route using a traveling174

salesman problem formulation (Sec. 2.2.2). Third, we solve for sUAS route using175

a vehicle routing problem formulation (Sec. 2.2.3).176

2.2.1 K-means clustering177

We use K-means clustering to find suitable waypoints for the UGV [32]. K-means178

clustering is a technique to group n observations into k clusters. Each of these k179

clusters has a central location, which is the centroid of the cluster. Our goal is180

to find the k centroids. This problem is NP hard, so we resort to the heuristic181

Algorithm 1. We give a brief description of the algorithm.182

The inputs to the algorithm are the ‘n’ mission locations x1, x2, ...xn and the183

number of clusters, k. Initially, we assign the centroid points at random. These184

centroid points are assigned by picking some ‘k’ points randomly from location185

of the existing mission points in the space. Next, we carry a sequential optimiza-186

tion; first, to assign membership for an observation to a cluster, and second, to187

recompute the centroid of the cluster. To assign membership, we find the distance188

between an observation and centroid of each cluster and then assign the obser-189

vation to the cluster with minimum distance. To recompute the centroid of the190

cluster, we use the observations from the cluster. We repeat these two steps until191

StoppingCondition() that no observation changes cluster membership.192

2.2.2 UGV route using traveling salesman formulation193

As described in the previous section, we have already found a sparse set of way-194

points using k-means clustering. Using these waypoints as vertices, we formulate195
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and solve a Traveling Salesman Problem (TSP) find a route for the UGV. We196

assume that the starting location of the UGV is pre-specified, but our algorithm197

chooses the ending location. We assume that there is only a single UGV with198

unlimited fuel capacity.199

Consider a directed graph G′ = (V ′, E′) where V ′ is the entire set of vertices
V ′ = {0, 1, 2, ...., k}, which are the cluster centroids with 0 being the ‘start’ vertex,
and E′ is the set of edges that gives the arc costs between i and j and E′ =
{(i, j)|i, j ∈ V ′, i 6= j}. The c′ij gives the non-negative arc cost between a particular
i and j. The x′ij is a binary variable where the value of x′ij will be 1 if a vehicle
travels from i to j, and 0 otherwise. We formulate the TSP problem as follows,

min
∑
i∈V ′

∑
j∈V ′

c′ijx
′
ij (1)

s.t.,
∑
i∈V ′

x′ij = 1, ∀j ∈ V ′ \ {0, k} (2)

∑
j∈V ′

x′ij = 1, ∀i ∈ V ′ \ {0, k} (3)

∑
j∈V ′

x′0j =
∑
i∈V ′

x′ik = 1, {0, k} ∈ V ′ (4)

∑
i∈Q

∑
j∈Q

x′ij ≤ |Q| − 1, ∀Q ⊂ {1, ..., k}, |Q| ≥ 2 (5)

x′ij ∈ {0, 1}, ∀i, j ∈ V ′ (6)

The objective in Eq. 1 is to minimize the total distance traveled by the UGV. The200

constraints shown in Eq. 2 and Eq. 3 ensures that the UGV visits each vertex once,201

that is, balancing the incoming and outgoing number of vehicles at a particular202

vertex. Constraint in Eq. 4 ensures that the vehicle must start from a given ‘start’203

vertex and ends at the ‘end’ vertex, that is, it does not loop back to the start204

vertex. Although constraint Eq. 4 is satisfied by constraints Eq. 2 and Eq. 3, we205

present them separately for the sake of completeness. Constraint in Eq. 5 ensures206

that there are no sub-tours. Finally, constraint Eq. 6 represents the binary decision207

variables.208

2.2.3 sUAS routes using vehicle routing problem formulation209

As described in the previous section, we have already found a path for the UGV.210

Using this path, we assign a sufficient number of vertices on the path as possible211

recharging depots for the sUAS-UGV rendezvous. We assume that each of the212

K sUASs starts at the same location as the UGV, formulate a vehicle routing213

problem with capacity constraints to account for fuel limits, time windows to214

allow for rendezvous, and dropped visits to allow the sUAS to visit some of the215

many vertices on the UGV path. We constrain the sUAS to a fixed speed, pre-216

specify the battery capacity and service time as the sUAS lands and waits on the217

UGV.218

The set of all UGV waypoints is denoted byD = {0, 1, 2, ...,m}. There are n−m219

pre-specified mission points which belong to the set M = {m+1, ..., n}. The set of220

all vertices is then V = M
⋃
D = {0, 1, 2, ...,m,m+ 1, ..., n}. The set of all edges221

denotes all possible connections between the vertices E = {(i, j)|i, j ∈ V, i 6= j}.222
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Consider a directed graph G = (V,E) where V is the entire set of vertices
V = {0, 1, 2, ....,m,m+ 1, ...., n} and E is the set of edges that gives the arc costs
between i and j and E = {(i, j)|i, j ∈ V, i 6= j}. Let cij be the non-negative arc
cost between a particular i and j. Let xij be the binary variable where the value
of xij will be 1 if a vehicle travels from i to j, and 0 otherwise. We formulate the
VRP problem with fuel constraints, time windows, and dropped visits as follows,

min
∑
i∈V

∑
j∈V

cijxij (7)

s.t.,
∑
i∈V

xij = 1, ∀j ∈M \D (8)

∑
j∈V

xij = 1, ∀i ∈M \D (9)

∑
i∈V

xij <= 1, ∀j ∈ D \ {0} (10)

∑
j∈V

xij <= 1, ∀i ∈ D \ {0} (11)

∑
j∈V

x0j =
∑
i∈V

xim = K, {0,m} ∈ D (12)

fj ≤ fi − (cijxij) + L1(1− xij), ∀i ∈ V, j ∈ V \D (13)

fj = Q, ∀j ∈ D (14)

0 ≤ fj ≤ Q, ∀j ∈ V (15)

tj ≥ ti + (si + (cijxij))− L2(1− xij), ∀i ∈ V, j ∈ V (16)

tlj ≤ tj ≤ tuj , ∀j ∈ V (17)

xij = 0, ∀i ∈ D,∀j ∈ D (18)

xij = 1→ fi ≥ cij , ∀i ∈ V \D,∀j ∈ D (19)

xij = 1→ fi = Q, ∀i ∈ D,∀j ∈ V \D (20)

xij = 1→
∑

i∈V \D

xji = 1, ∀j ∈ D,∀i ∈ V \D (21)

xmj = 0, ∀m ∈ D,∀j ∈ V (22)

xij ∈ {0, 1}, ∀i, j ∈ V (23)

fi > 0, fi ∈ R+ ∀i ∈ V (24)

ti > 0, ti ∈ Z ∀i ∈ V (25)

si ≥ 0, si ∈ Z ∀i ∈ V (26)

Q > 0, Q ∈ R+ (27)

L1, L2 > 0, L1, L2 ∈ R+ (28)

The objective is Eq. 7 is to minimize the total distance traveled by the all the223

sUASs. Constraints in Eq. 8 and Eq. 9 represents the flow conservation where224

the inflow of a certain sUAS should be equal to the outflow of that sUAS at any225

vertex among the mission vertices M . Constraints in Eq. 10 and Eq. 11 denotes226

the optional stops the sUAS can take on the UGV vertices D, i.e., dropped visits.227

Next, constraint in Eq. 12 also represents the flow conservation but here it is228
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represented for start and end vertices, where the number of sUASs leaving the229

start vertex must be equal to the number of sUASs reaching the end vertex. The230

start vertex and end vertex correspond to the first and last vertex of the UGV231

route. The constraint in Eq. 13 is the Miller-Tucker-Zemlin (MTZ) formulation [18]232

for sub-tour elimination. This constraint ensures that none of the sUAS batteries233

are depleted out while eliminating sub-tours. In this constraint, L1 denotes a large234

number. This constraint becomes active only when there is a flow between vertices235

i and j and subtracts from the sUAS fuel based on distance between the two236

vertices. The fuel consumption of sUAS depends upon the distance traveled by237

them. It is directly proportional to the distance traveled between two vertices i238

and j. Constraint Eq. 14 states that if the vertex is a recharging UGV stop,239

then UGV has to refuel the sUAS to its full capacity Q. Constraint Eq. 15 is240

the condition that the sUAS’s fuel at any vertex in V should be between 0 and241

maximum fuel capacity. Constraint Eq. 16 denotes that the cumulative arrival242

time at jth node is equal to the sum of cumulative time at the node i, ti, the243

service time at the node i, si, and the travel time between nodes i and j, cijxij .244

Here L2 denotes a large number which helps to eliminate sub-tour constraints245

similar to Eq. 13. Constraint Eq. 17 is the time window constraint that the vehicle246

visits a certain vertex in the specified time window for that node. In this problem,247

the mission nodes are not constrained by time as the sUASs have the liberty to248

visit those mission points that benefits them according to the travel of UGV. This249

means that whenever sUAS needs to get refueled, it would be easier for it to go250

to the UGV to refuel. Constraints Eq. 18 restricts that the two consecutive visits251

made by the sUASs should not be consecutive UGV stops. Constraints Eq. 19 -252

Eq. 21 represents the indicator constraints where the constraints to the right side253

of the arrow should hold if the binary decision variable xij is equal to 1. If xij is254

equal to zero, then the constraints to the right side of the arrow may be violated.255

The constraint in Eq. 19 that if there is travel from any mission vertex i to the256

UGV vertex j, then the fuel level at the ith node should be atleast equal to the257

distance traveled between them because the fuel consumption in this problem is258

assumed to be linearly proportional to the distance traveled. Constraint in Eq. 20259

indicates that if there is travel from the UGV vertex i to any mission vertex j,260

then the fuel level at the ith node should be the maximum fuel capacity of the261

sUAS as it is recharging to its full capacity at the UGV stop. The constraint in Eq.262

21 makes sure that if any sUAS comes to the refuel vertex to recharge, then there263

must exist an arc between that refuel node and a mission node to maintain the flow264

conservation. Constraint in Eq. 22 denotes that there should not exist any flow265

once the vehicle has reached the end node m. Eq. 23 is a binary decision variable266

that is responsible for flow between the edges. Eq. 24 represents the continuous267

decision variable that monitors the fuel level at any node and has zero as the lower268

bound value. Eq. 25 represents the integer decision variable that computes the269

cumulative time of sUAS’s route and has zero as the lower bound. Eq. 26 denotes270

the service time at the respective nodes, which is a positive integer with a lower271

bound equal to zero. Eq. 27 represents the maximum fuel capacity of a sUAS272

Finally, Eq. 28 denotes the large numbers used in the constraints Eq. 13 and Eq.273

16.274
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Table 1 Constraint Quantity analysis

Equation # Number of constraints Equation # Number of constraints

8 V −D 16 V 2

9 V −D 17 2 × V 2

10 D − 2 18 D2

11 D − 2 19 (V −D) ×D

12 2 20 (V −D) ×D

13 (V −D) × V 21 ((V −D) ×D) − (V −D)

14 D × V 22 (V −D)

15 (2 × (V −D)) × V

SUM = 6V 2 − 2D2 +DV + 2V − 2

2.3 Solution using Constraint Programming (CP)275

Table 1 gives an itemized lists the number of constraints in the sUAS problem276

formulation. The equation numbers in the table correspond to the equations from277

the Sec. 2.2.3. In the table, the notation V denotes the total number of vertices,278

including all possible UGV stops and the mission points, while D denotes only the279

UGV stops. The grand sum of all constraints SUM = 6V 2− 2D2 +DV + 2V − 2.280

Thus, the number of constraints scale as the square of the number of mission281

points.282

We used Gurobi Mixed Integer Linear Programming (MILP) to solve for small283

instances of this problem [9]. For k = 2 clusters, D = 9 and V = 34 would give284

a total constraint of 7146 and is solved about 40 sec using Gurobi on a standard285

desktop (3.7 GHz Intel Core i9 processor with 32 GB RAM on a 64-bit operating286

system). However, if k = 4 then D = 17 and V = 42 would give constraints287

of 10802 and is solved in 240 sec using Gurobi. Thus, Gurobi takes significantly288

higher time as the number of constraints are increased. Thus, it does not scale289

very well for a larger number of constraints.290

Instead, we used Google’s OR-ToolsTMto generate the results in this paper [7]291

mainly for its speed of solution. OR Tools uses constrained programming (CP)292

[24,25] to solve TSP and VRP problems. Constraint programming or constraint293

optimization is a tool for solving hard combinatorial optimization problems by294

searching for solutions that satisfy a list of constraints. Using Google’s OR-tools295

for k = 2 clusters and k = 4 clusters as described earlier, required only 60 sec, and296

the solution was about marginally better, about 4%, compared to Gurobi.297

OR-ToolsTMuses a search tree, local search, and meta-heuristics to find feasible298

and, subsequently, the most optimal solutions. At the heart of OR-toolsTMis a CP-299

SAT solver [7]. The solver uses DecisionBuilder that has as its input, the decision300

variables, rules to choose the next variable to assign a value, rules for choosing301

the value to assign to the variable. Using the DecisionBuilder, we use the Path302

Cheapest Arc strategy to find an initial feasible solution (see algorithm in [28]).303

Starting with the “start” node, the decision builder connects the node that has the304
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Fig. 2 Move operators using in Constraint Programming [4]

shortest distance from the previous node and iterating till the end. While doing305

the connections, it checks the feasibility of the solution.306

Then OR-ToolsTMuses a local search to find the best solution in the neighbor-307

hood of the current solution.308

This local search proceeds by a move operator that rewires the nodes and checks309

for feasibility and cost. These moves are repeated until a termination criteria, such310

as no improvement of the objective. There are 5 move operators. These are listed311

next and shown in Fig. 2 and is taken from [4].312

1. 2-opt interchanges the sub-part of a tour by removing two arcs, and then313

connects them interchangeably so that the objective value gets reduced.314

2. Or-opt moves the sub-part of a tour if there are a maximum of 3 contiguous315

visits to that sub-part of the tour.316

3. Relocate connects a visit of one tour to another tour if the reduction in317

objective value is seen.318
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4. Exchange involves swapping two visits between each other from either the319

same tour or two different tours.320

5. Cross involves exchange of a visit at the end of one to another tour. The321

difference between Exchange and Cross is that the Exchange move can be322

done in any part of tour/tours, but Cross can be done only to the end portions323

of two tours.324

In order to escape a local optimum solution, OR-ToolsTMuse meta-heuristics.
We use the Guided Local Search (GLS) in our problem [30]. In GLS, we add a
penalty term to the objective function O leading to an augmented objective O′

function. The penalty term is dependent on the neighborhood of the solution x
through a set of features F . The augmented objective function is [4]

O′(x) = O(x) + λ
∑
i∈F

fi(x)pici (29)

where the indicator function for the corresponding feature i that belongs to F is325

fi. We define fi(x) = 1, if the feature i is in solution or 0 otherwise. Also, λ is the326

penalty factor that can tune the search for the solutions. For example, a larger λ327

increases the diversity of the solutions (also see [31]), pi is the number of times the328

particular feature i has been penalized, and ci is the cost for the feature fi. Using329

the augmented objective O′ increases the cost of the objective with respect to330

the neighborhood, thus enabling the solver to get unstuck from a local optimum331

solution. Subsequently, a local search is used to continue the search. For more332

information about the implementation of OR-Tools and the flow of multi-tiered333

optimization, we have uploaded a repository containing the simulation program in334

Github [21].335

3 RESULTS336

We were interested in investigating how the distribution of mission points, the337

number of clusters, and the number of sUASs affects the solutions of the coor-338

dinates planning of sUAS-UGV routes. Figure 3 shows how the mission spread339

was chosen. We chose 25 mission points over an area of 8 × 8 kms, but vary the340

mission spread. We started off with three cluster centroids randomly placed on341

the map. Then we chose four densities (ρ) for the mission points, ρ = 1, 2 be-342

ing clustered while ρ = 3, 4 being uniformly spread out. For each density level343

ρ = 1, 2, 3, 4, we chose 20 different mission spreads. For each mission spread,344

we optimized for clusters k = 2, 3, 4 and sUASs K = 1, 2, 3, 4. Thus, we had345

4(density)× 20(mission spread)× 3(clusters)× 4(sUASs) = 960 optimization. All346

the results are in Table 2.347

In all optimizations, we enforce the following assumptions and constraints.348

Each sUAS travels at a uniform speed of 10 m/s and has a total flight time of 15349

min. Thus, each sUAS can travel 9 km between successive recharges. Hence, for350

the area of 8× 8 kms, depending on the mission spread and number of sUASs, it351

is possible to travel across all missions without a single recharge. There is a single352

UGV in all optimization and it can vary its speed from 1.5 m/s to 4.5 m/s. The353

time to recharge the sUAS once docked on the UGV, known as the service time,354

is fixed at 5 min. Once the sUAS docks on the UGV, both of them don’t move for355

a time equal to the service time.356
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We used Constraint Programming (CP) solver in Google’s OR-ToolsTMto solve357

both, the UGV route and the sUAS route. We used Python 3.9.4 and performed358

the computations on a 3.7 GHz Intel Core i9 processor with 32 GB RAM on a359

64-bit operating system. Each optimization took about 60 seconds, thus we could360

do all 960 optimizations in about 16 min.361

For a density ρ we choose 20 random position for the mission points and run362

the optimization for a number of sUASs K and given cluster size k. Our metrics363

for comparing the results for the 20 optimizations are the total distance covered by364

all sUASs, the feasibility percentage, number of recharges, total time, and mission365

time. The total distance is the sum of the distances travelled by all sUASs and366

is the objective of the optimization. The feasibility percentage is the percentage367

of feasible solutions out of 20 runs. The number of recharges is the total number368

of recharges taken by all the sUASs. The total time is the sum of the travel and369

service time for all sUASs. The mission time is the sum of the travel and service370

time of the sUAS that takes the most time among all sUASs. Table 2 tabulates371

the results using the above metric. We analyzed these results in more details in372

Figs. 4 - 9.373

Figures 4 compares the different metrics (distance, time, and recharging stops)374

for sUASs for different mission densities. We assess the results for two sUASs,375

K = 2, 3. The metrics increase as the missions get more spread out with ρ = 1376

being most clustered and ρ = 4 being least clustered. When comparing the different377

sUASs, it can be seen that the total distance (a) and total time (c) are more for378

K = 3 than K = 2 while the total recharging stops (b) and mission time (d) are379

less for K = 3 than K = 2. Thus, more sUASs shorten the mission time at the380

cost of increasing the travel distance.381
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Table 2 Results for 960 optimization. Here K is the number of sUASs, ρ is the density of
mission points with 1, 2 is clustered and 3, 4 is uniformly spread out, k is the number of clusters.
Each row in the table, that is, for a given K, given density ρ, and given cluster k, corresponds
to 20 optimizations. In each optimization there is randomization of mission points.

(a) Total distance (objective), feasibility percentage, and recharging stops
K ρ Total distance Feasibility % Total recharging stops

(in kms.)
k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4

1

1 - 13.1±1.69 13.8 ± 1.8 0 55 65 0 ± 0 1 ± 0 1.38±0.48
2 18 ± 0 16.4±2.09 19 ± 2.09 5 20 100 1 ± 0 1.75±0.43 2.75±0.83
3 - - 35 ± 4.34 0 0 90 0 ± 0 0 ± 0 4.83±1.17
4 - - 38.5±4.73 0 0 65 0 ± 0 0 ± 0 6.23±1.42

2

1 14.5±0.56 14.4±0.59 14.5±0.46 100 100 100 0.4 ± 0.49 0.4 ± 0.49 0.1 ± 0.3
2 18.5±1.29 18.3±1.21 19.4±1.81 100 100 100 0.85±0.36 0.95±0.22 1.1 ± 0.83
3 31 ± 4.45 31 ± 4.4 33 ± 8.95 35 85 95 2.57±1.05 2.77±0.94 3.3 ± 1.45
4 33.8±2.73 36.9±7.49 37.5±5.95 20 80 95 3 ± 0.71 3.93±1.10 4.26±1.37

3

1 17.2±0.58 16.8±0.53 16.9±0.49 100 100 100 0 ± 0 0.2 ± 0.4 0.1 ± 0.3
2 20.6±1.05 20.4±1.02 21.3±1.62 100 100 100 0.5 ± 0.5 0.75±0.54 0.75±1.04
3 31.3±3.97 30.5±3.72 31.9±7.97 100 100 90 1.65±0.79 1.85±0.91 2.17±0.83
4 37.6±5.97 35.8±6.84 38.8±7.93 100 100 90 2.3 ± 0.95 2.65±1.15 3.56±1.30

4

1 20 ± 0.53 19.3 ± 0.6 19.5±0.51 100 100 100 0.2 ± 0.4 0.4 ± 0.49 0.1 ± 0.3
2 23.3 ± 1.1 23.1±1.16 24.1±1.56 100 100 100 0.45±0.50 0.55±0.50 0.8 ± 1.03
3 32.9±4.17 33.6±3.51 34.9±4.46 100 100 90 1.65±1.01 1.95±0.86 1.94±0.78
4 37.8±5.48 36.7±5.61 38.1±6.68 100 95 75 1.65±1.11 1.89±1.12 2.53±1.50

(b) Total time and mission time

K ρ
Total time (in min.) Mission time (in min.)

k=2 k=3 k=4 k=2 k=3 k=4

1

1 - 163.7 ± 6.02 169.18 ± 9.1 − 163.7 ± 6.02 169.18 ± 9.1
2 165.72 ± 0 171.03 ± 6.98 192.27 ± 8.58 165.72 ± 0 171.03 ± 6.98 192.27 ± 8.58
3 - - 230.37±12.39 - - 230.37±12.39
4 - - 242.82±14.39 - - 242.82±14.39

2

1 161.43 ± 3.67 161.23 ± 3.64 160.21 ± 4.09 93.36 ± 14.96 98.63 ± 22.40 89.48±416.08
2 171.29 ± 5.91 173.78 ± 4.84 178.66 ± 9.81 107.92±12.07 121.24±18.48 116.82±22.11
3 205.68±15.35 208.52±14.56 208.08±50.77 117.95 ± 7.07 141.06±10.64 157.62±45.54
4 214.05 ± 8.34 224.92±21.56 230.19±16.56 119.05 ± 3.98 136.44±12.95 190.32±25.26

3

1 168.28 ± 0.97 170.27 ± 3.84 67.99 ± 5.18 168.28 ± 0.97 88.36 ± 19.85 76.68 ± 16.31
2 177.94 ± 4.26 179.77 ± 3.84 182.27±10.61 91.19 ± 19.37 111.13±28.31 95.39 ± 31.21
3 202.60±12.40 205.53±13.86 212.77±13.94 90.04 ± 8.43 118.12±28.31 135.35±27.61
4 219.23±14.99 219.57±19.04 233.91±19.77 98.91 ± 13.64 124.52±18.10 166.09±32.66

4

1 168.20±33.11 180.21 ± 3.58 178.64 ± 4.17 78.65 ± 35.78 89.69 ± 21.99 78.65 ± 33.18
2 186.21±4.315 187.69 ± 5.54 192.61±11.16 84.58 ± 20.18 101.61±29.47 94.27 ± 31.91
3 211.20±13.77 215.19±11.29 219.42±13.10 90.37 ± 10.10 113.84±19.98 116.56±30.68
4 219.30±15.84 219.52±16.02 229.52±20.02 94.31 ± 10.51 112.15±21.02 137.69±41.12

Fig. 5 depicts four distributions of mission points, with decreasing density from382

(a) to (d). We use cluster size k = 3 for computing UGV route and K = 2 sUASs383

to serve the mission points. Since the cluster centroids are at the same location384

for all cases, the UGV route, including its distance, remains the same. We show385

the metrics in the side box in each figure. We can see that for (a) and (b) with386

ρ = 1, 2 (most dense) have lower values for the 4 metrics when compared with (c)387

and (d) with ρ = 3, 4. Clearly, as the missions get spread out, the sUASs have to388

travel a larger distance, which increases the number of recharging stops, the total389

time, and the mission time.390

Figures 6 compares the different metrics (distance, time, and recharging stops)391

for different cluster size in the K-mean clustering. We present results for two392

different densities ρ = 2 (clustered) and ρ = 3 (uniformly spread) for 3 sUASs. The393
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(b) Total recharging stops, (c) Total time, (d) Mission time, all as a function of density ρ from
ρ = 1, 2 (missions are clustered) to ρ = 3, 4 (missions are uniformly spread out).

metrics increase as the density changes from clustered ρ = 2 to uniformly spread394

out ρ = 3 as expected. The clusters size k does not seem to show a correlation for395

highly clustered missions. For instance, for density level ρ = 2, the total distance396

and total time are almost the same for different cluster sizes, while the recharging397

stops and mission time show an increase for k = 3. The clusters size k seems to398

show some correlation for spread out missions. For instance, for density level ρ = 3,399

the total distance decreases, but the total time, mission time, and recharging stops400

all increase with an increase in the cluster size.401

Fig. 7 (a) shows the mission points for one scenario with density of ρ = 3.402

We chose different cluster sizes for the k-mean clustering. The plots (a), (b), and403

(c) correspond to k = 2, 3, 4 respectively. We can observe that the UGV route404

increases as k increases. We then solve each scenario with the same number k = 3405

sUASs. We note that the total distance (objective) is almost the same for all three406

optimizations. The recharging stops and the total time for k = 2 (b) and for k = 3407

(c) are almost the same, while those for k = 4 are slightly higher. The extra total408

time for k = 4 is probably because of the added recharging stop, which adds a409

service time to the total time. Finally, the mission time increases across from (b)410

to (d) because of the unequal sharing of missions as the cluster size increases.411

Figures 8 compares the different metrics (distance, time, and recharging stops)412

for different number of sUASs. We use two density levels, ρ = 1, 2 (both clustered)413

and chose a cluster size of k = 3. The metrics increase as the density decreases414

from ρ = 1 to ρ = 2 as expected. As the number of sUASs increase, the total415

distance (objective) (a) and total time (c) increases while the recharging stops (b)416

and the mission time (d) decreases. We may attribute the reduction in these latter417

metrics to better sharing of the missions among the sUASs.418
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Fig. 9 shows the solution obtained by changing the number of sUASs for the419

same distribution of mission with density ρ = 2 and cluster size k = 3. Since420

the density and cluster size are the same, the UGV route is the same across all421

scenarios. The overall distance and total time increases, and the refueling stops and422

mission times decreases with the increase in the number of sUASs. The increase423

in total distance with increase in sUASs may be attributed to inefficient sharing424

of missions, which also increases the total time. However, the benefit of inefficient425

sharing is that recharging stops decrease, which also reduces the mission time.426

4 DISCUSSION427

In this paper, we have presented heuristics for planning the path of a multiple428

fuel-constrained small Unmanned Aerial Systems (sUASs) and a single Unmanned429

Ground Vehicle (UGV) such that the sUASs can visit a set of mission points while430

minimizing the total distance covered and without running out of fuel by docking431

on the UGV to recharge. We solved the problem in a tiered fashion; first, we use the432

mission points to create waypoints for the UGV using K-means clustering; second,433

we solved for the UGV route using the Traveling Salesman Problem formulation434



Coordinated Route planning of sUAS and UGV 17

0 1 2 3 4 5
0

20

40

60

D
is

ta
nc

e,
 k

m
 (O

bj
ec

tiv
e) Density level 2

Density level 3

0 1 2 3 4 5
0

2

4

6

To
ta

l r
ef

ue
lin

g 
st

op
s Density level 2

Density level 3

0 1 2 3 4 5
Number of clusters (k)

100

150

200

250

300

To
ta

l t
im

e,
 m

in Density level 2
Density level 3

0 1 2 3 4 5
Number of clusters (k)

50

100

150

200

250

M
is

si
on

 ti
m

e,
 m

in

Density level 2
Density level 3

(a) (b)

(c) (d)

Fig. 6 Metrics as function of number of clusters for 3 sUASs for two density levels ρ = 2 is
clustered and ρ = 3 is uniformly spread out. (a) Total Distance (objective), (b) Total recharging
stops, (c) Total time, (d) Mission time, all as a function of number of clusters.

using the waypoints as vertices; third, we solved for the sUAS route by using435

mission points and using waypoints on the path of the UGV as vertices and using436

a Vehicle Routing Problem formulation with capacity constraints (fuel limits),437

time windows (to match UGV rendezvous points for recharging), and dropped438

visits (to allow sUAS to drop some of the rendezvous points).439

We solved the mixed integer programming problem (MILP) formulated in440

Sec. 2.2.3 using constraint programming which is based on heuristics. The same441

problem may be solved using MILP solvers such as Gurobi [9]. We compared so-442

lutions obtained by both solvers in a limited number of cases and the results are443

shown in Tab. 3. Each row in the table corresponds to a certain setting given by444

the number of sUAS’s (K), the mission density (ρ), and the cluster size k. For445

each setting, we choose 10 scenarios and run the optimization. The table gives the446

objective value and the optimization time for each solver. The optimality gap is447

the percent difference in the objective value between OR-Tools and Gurobi. It can448

be seen that Gurobi is between 4 − 15% more optimal than OR-tools. However,449

while OR-Tools takes a maximum of 10 seconds (which is the termination crite-450

ria for the optimization), Gurobi takes between 71 − 300 seconds, indicating the451

computational superiority of using OR-Tools. Thus, we conclude that OR-Tools452

is 7− 30 times faster than Gurobi, but only 4− 15% sub-optimal. Hence, we used453

OR-Tools in our calculations.454

We make some general observations based on our limited study of 25 mission455

points with at least one mission point beyond the coverage area of a single sUAS.456

The spread of the mission points is an important criteria that affects the solution457
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feasibility and the nature of optimal solution. When the missions are well clustered458

( ρ = 1, 2 here), we find feasible solutions with K ≥ 2 sUASs, but as the missions459

spread out (ρ = 3, 4), we need K ≥ 3 sUASs to serve all mission points. The results460

suggest that there is a minimum number of sUASs to generate feasible solutions461

which depend on the mission spread and the fuel level.462

The number of sUASs has a strong correlation with the optimization outcomes.463

The total distance travelled by all sUASs increases as the number of sUASs in-464

creases. This is because multiple sUASs are now sharing mission points closer465

to each other, resulting in a larger travel distance. The increased total distance466

leads to larger total travel time. However, the maximum distance travelled by any467

given sUAS is smaller, which correlates to a shorter mission time. The number of468

recharging stops also decreases as more sUASs have a bigger collective range.469

The cluster size chosen shows a weak correlation with the outcomes. For a470

given density and number of sUASs, the total distance covered, recharging stops,471

total time, and mission time remained almost constant.472

We have not shown solutions for a single cluster k = 1 and multiple sUASs473

K = 1, 2, 3, 4. This is because we end up with very few feasible solutions and hence474

should be avoided. The k = 1 cluster size leads to a rather restrictive UGV route475

that prevents the VRP formulation from finding feasible solutions.476
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Fig. 8 Metrics as function of number of sUASs for cluster size of 3 for two density levels,
both of which correspond to clustered distributions. (a) Total Distance (objective), (b) Total
recharging stops, (c) Total time, (d) Mission time, all as a function of number of sUASs.

Table 3 Comparison between constraint programming solver (OR-tools) and mixed-integer
linear programming solver (Gurobi). Each row corresponds to particular combination of K,
ρ, and k where K represents the number of sUAS, ρ represents the mission density, and k
represents the number of clusters. These are for 10 randomly chosen scenarios for each row.
The optimality gap is the percent error between Gurobi and OR-tools

Mission
distribution
pattern

Gurobi OR-Tools Optimality
gap (%)Objective

value (in
km.)

Optimization
time (in s)

Objective
value (in
km.)

Optimization
time (in s)

K=1, ρ=2,k=4 17.15±0.85 300 ± 0 20.41±1.23 10 ± 0 15.5±5.80

K=2, ρ=3,k=3 27.99±2.89 155.8 ± 135.52 30.04±4.19 10 ± 0 8.37±5.42

K=3, ρ=3,k=3 29 ± 2.77 71.3 ± 117.96 30.59±3.76 10 ± 0 4.9 ± 4.14

K=4, ρ=4,k=2 35.95±3.15 117.2 ± 76.26 37.79±4.11 10 ± 0 4.3 ± 4.17

The key advantage of our framework is the decomposition of a complex prob-477

lems into three-stages. This simplifies the problem formulation. The use of con-478

straint programming as a solver gives high quality solution in fraction of seconds479

for the scenarios considered here (25 missions points, 1-4 sUAS an 1 UGV).480

The prime disadvantage of our tiered heuristics is the cascading effect of pa-481

rameter choices. In our case, the quality of the k-means clustering determines the482

UGV route, which then determines the sUAS route. Thus, a poor choice of cluster483

size can affect the final solution. We can see this for K = 1 and k = 2, 3 where484

we get no feasible solution. The K-mean clustering and UGV route selection do485
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Total time = 169.3 min
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Distance (Obj) = 16.7 km
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Mission time = 128.9 min

Distance (Obj) = 19.1 km
Refueling stops = 1
Total time = 178.6 min
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Fig. 9 Optimizations illustrating the solution for different number of sUASs. Here mission
density ρ = 2 and cluster size is k = 3. The number of sUASs are (a) K = 1, (b) K = 2, (c)
K = 3, and (d) K = 4.

not consider the number of mission points in a cluster. If there are more mission486

points in a cluster than we should probably give that cluster a higher preference487

to be visited earlier than later. As the number of sUASs increases, we notice that488

there is unequal sharing of mission points (e.g., Fig. 9 (d)). There are probably489

two reasons for this: one, the geographic distribution of the missions favors this490

solution, and two, we did not enforce that all sUASs finish their missions simulta-491

neously, thus allowing some sUASs to travel a shorter distance. We have overcome492

this issue to an extent by using genetic algorithms and bayesian optimization to493

tune the parameters [22].494

We finish by listing directions for future work. We assumed fixed recharging495

time for sUAS irrespective of its existing fuel level before recharging. This is not496

optimal. Thus, future research address this issue in such a way that the refueling497

amount, and thereby the refueling time, of the sUAS on UGV depends upon498

the existing fuel level before any sUAS reaches the UGV from a mission to get499

recharged. We have assumed that UGV has indefinite fuel capacity which is not500

the case in practical scenarios. Future studies will consider fuel capacity of the501

UGV. Furthermore, the terrain chosen affects the UGV fuel usage and it will also502

need to be taken into account in solving the routing problem.503
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5 CONCLUSION504

We conclude that the problem of routing multiple fuel-constrained small Un-505

manned Aerial Systems (sUAS) with recharging on a single Unmanned Ground506

Vehicle (UGV) can be solved quickly and efficiently using a tiered heuristics where507

the UGV route is solved first followed by the sUAS route within a constraint pro-508

gramming approach. We can solve routes for about 25 mission points with 1 to 4509

sUAS and a single UGV in less than a minute on standard desktop computer. This510

opens up the possibility of real-time optimization during practical implementation.511

Our main observations are: (1) there is a minimum number of sUASs needed based512

on the fuel constraints and velocities of the sUAS and UGV and mission spread,513

and (2) the number of clusters need to be k > 1, but there is no clear correlation514

between cluster size and the solution. The overall distance and overall time taken515

increases as the missions spread out and as the number of sUASs increase. How-516

ever, the mission time and the recharging stops decrease as the number of sUASs517

increases. Finally, we found that constraint programming solvers are 7− 30 times518

faster, but 4− 15% sub-optimal compared to mixed-integer solvers, which provide519

exact solutions.520
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