
Quadratically constrained quadratic programs using approximations of
the step-to-step dynamics: application on a 2D model of Digit

Ernesto Hernandez Hinojosa˚, Daniel Torres, and Pranav A. Bhounsule

Abstract— Bipedal robots are yet to achieve mainstream
application because they lack robustness in real-world settings.
One of the major control challenges arises due to the ankle
motors’ limited control authority, which prevents these robots
from being fully controllable at a particular instant (e.g., like
an inverted pendulum). We show that to stabilize such robots,
they must achieve stability over the time scale of a step, also
known as step-to-step (S2S) stability. Past approaches have used
the linearization of the S2S dynamics to develop controllers, but
these have limited regions of validity. Here, we use a data-driven
approach to approximate S2S dynamics, including its region of
validity. Our results show that linear and quadratic models
can approximate the region of validity and S2S dynamics,
respectively. We show that the quadratic S2S approximation
generated using a data-driven full-body dynamics simulator
outperforms those generated using the analytical linear S2S
generated from the popularly used linear inverted pendulum
model (LIPM). The S2S approximation enables us to formulate
and solve a quadratically constrained quadratic program to
develop walking controllers. We demonstrate the efficacy of the
approach in simulation using a 2D model of Digit walking on
patterned terrain. A video is linked here: https://youtu.
be/MniABg2jGEA

I. INTRODUCTION

Bipedal robots inspired by animal morphology, such as
Digit, seek to mimic the balance, walking control, and
flexibility displayed by humans. However, such robots are yet
to walk robustly to find their way to practical applications.
Bipedal robots are challenging to control due to their high
dimensionality, nonlinear dynamics, and under-actuation due
to springs and limited ankle torques.

Broadly, two control approaches exist that rely on the fact
that walking is, in principle, of low dimensions. One uses a
template (e.g., linear inverted pendulum model, LIPM [1]) to
develop a controller and then transfer this controller to a full
robot model using force and position control. The second
develops a trajectory tracking controller using a full-order
robot model in such a way that the system behaves like a
low-order model (e.g., hybrid zero dynamics [2]). The former
does not account for angular momentum or center of mass
differences from a point-mass model, while the latter has
difficulty stabilizing if the system deviates significantly from
the reference trajectory.

Department of Mechanical and Industrial Engineering, University
of Illinois at Chicago, 842 W. Taylor St., Chicago, IL 60607
USA. eherna95@uic.edu, dtorre38@uic.edu,
pranav@uic.edu. The work is funded by US National Science
Foundation through grant 1946282 and 2128568, E.H.H. was supported by
the American Heart Association predoctoral fellowship, D.T. was supported
by the Illinois Louis Stokes Alliance for Minority Participation Bridge to
the Doctorate Fellowship. ˚ Corresponding author

Our approach takes the best of the two. We use a LIPM
template to develop the controller and then use tight trajec-
tory tracking on the full order model to reduce it to low
dimensions. To circumvent the issue of significant deviation
from the nominal trajectory, we use a data-driven approach to
identify the state and control deviations that take the system
away from the nominal trajectory over the time scale of a
step, also known as the S2S dynamics. We fit a quadratic
regression model to the S2S dynamics and use the model to
develop robust controllers. The model is incorporated as a
quadratic constraint in a quadratic program which is used to
optimize foot placement to walk over obstacles.

II. BACKGROUND AND RELATED WORK

Control of bipedal robots with small or point feet is
challenging because of under-actuation or the lack of control
of all degrees of freedom at all times. Such robots are locally
unstable, but with a good control design can be stable over
the time scale of a step [3]. This notation of step-to-step
(S2S) stability is known as orbital stability [4]. There is
evidence that humans use S2S stability to balance while
walking and running [5].

Some extreme examples of S2S stability are passive
dynamic walkers [6]. Here there is no control, and the
robot moves down a ramp relying on its natural dynamics
[7]. However, such robots are limited to walking down
ramps, usually at low speeds, and are knocked out by the
slightest disturbances or terrain variation. Adding actuators
and actively regulating the torque/force to add just enough
energy to overcome friction and energy losses due to foot-
strike enables these robots to walk on level ground [8].

To demonstrate S2S or orbital stability, a Poincaré map
is used [4]. A Poincaré map relates how the system’s state
maps from one step to the next. If the eigenvalues of the
linearization of the Poincaré map are all less than 1 then
the system is said to be S2S or orbitally stable. When
control is added, the linearization of the Poincaré map is
a function of the state and control. By choosing the control,
the eigenvalues can be manipulated to be less than 1 [9].

The Hybrid Zero Dynamics takes a different approach
toward S2S stability [10], [11]. Here, virtual constraints are
used where the controlled degrees of freedom are tracked
as a function of the uncontrolled degree of freedom. This
reduces the Poincaré map to a lower dimension (1 for 2D
walking and 5 for 3D walking) but does not guarantee S2S
stability. To achieve the S2S stability, one could: find controls
such that the eigenvalues are less than 1, change the virtual
constraints or add event-based stabilization [12]. However,

(a) (b)
Fig. 1: (a) Robot model: Digit bipedal robot with 30 degrees of freedom and
20 actuated joints. (b) A parallelogram closed chain was used to simplify
the 6-bar linkage of the leg.

note that all these methods enable linearized stability, which
may be lost for big perturbations.

Since bipedal locomotion is fundamentally a low-
dimensional problem, control methods start with an idealized
model such as the linear inverted pendulum for walking or
the spring-loaded inverted pendulum for running [13]. Then
heuristics such as the capture point, which is the location
where the robot needs to step to come to a complete stop,
may be used to develop control strategies [14]. One of the
limitations of such simple models is that they do not capture
nonlinearities and changes in angular momentum and may
lead to conservative walking when transferred to the full
body model or hardware.

Our past work on the spring-loaded inverted pendulum has
shown that control based on the nonlinear approximation of
the S2S map enables a broader range of perturbations [15].
Then using a 2D humanoid model and approximating the
S2S dynamics using polynomials and the region of validity
using support vector machines, we were able to demonstrate
walking on patterned terrain [16]. Interestingly, it has been
shown that approximations to the linear inverted pendulum
model (LIPM) can also generate accurate S2S maps for
control of the biped Cassie [17]. In this paper, we extend our
previous work to the humanoid Digit. Unlike Cassie, Digit
has an upper body with a significant mass. We demonstrate
that using the LIPM-based S2S map generates poor control
compared to using a full nonlinear dynamics-based S2S map.
Our contributions are: (1) a method to transfer LIPM models
to full body model; (2) use of data-driven approaches to learn
the S2S map, including the region of feasibility; and (3) a
quadratically constrained quadratic program to plan walking
on patterned terrain.

III. MODELS
A. Robot model

Digit is a 30-degree of freedom bipedal robot with 20
actuated joints shown in Fig. 1(a) (see [18] for more details).
Digit’s legs are similar to its predecessor Cassie [19], but
have an additional roll joint at the toe and an upper body
consisting of a torso and two arms. The robot kinematics
of the legs consists of two closed-loop chains, modeled as
distance constraints between the heel spring and the hip
pitch joints. For simplification, the knee and tarsus joint
position are inversely coupled during the swing leg phase.

This simplification arises because when the heel spring and
shin springs are uncompressed, the chain is a parallelogram
with two pairs of equal sides as shown in Fig. 1(b).

B. S2S Models

The general form of the S2S models developed in this
study is illustrated in Fig. 2 and the general S2S map is
shown in Eqn. (1). At the start of the single support phase
(SSP), the position and velocity of the center of mass (COM)
with respect to the stance foot are x´

k and v´
k , respectively,

where k is the step number. At the end of the current SSP,
the states become x`

k and v`
k . The S2S dynamics model,

ζ, maps the states s´
k “ tx´

k ,v
´
k u to s`

k “ tx`
k ,v

`
k u.

Fig. 2: The general S2S model.

s`
k “ ζ

`

s´
k , τp

˘

(1)

1) Analytical map from Linear Inverted Pendulum Model
(LIPM): In the LIPM the COM height is kept approximately
constant using the hip, knee and ankle joints. The equations
of the LIPM are linear

:x “
g

zc
x `

1

mzc
τp; :y “

g

zc
y `

1

mzc
τr (2)

where g is gravity, zc is the constant height of the COM, m
is the mass, and τp and τr are input pitch and roll torques,
respectively. In the 2D case, assuming no input torques, the
equations about the x-axis can be analytically integrated from
0 to time Ts to get

ζ
`

x´
k , v

´
k

˘

“

„

xL`
k

vL`
k

ȷ

“

„

CT ¨ x´
k ` TcST ¨ v´

k

ST {Tc ¨ x´
k ` CT ¨ v´

k

ȷ

(3)

which fits the form of Eqn. (1) where ST “ sinhpTs{Tcq,
CT “ coshpTs{Tcq, and Tc “

a

zc{g. The state superscripts
L and N indicate that the states belong to the LIPM or
regression model, respectively.

2) Regression-based map from MuJoCo simulator: A
data-derived polynomial regression model was formulated to
better capture the S2S dynamics of the robot. The LIPM
was used as a starting point to develop a controller for the
nonlinear model. The map given by Eqn. (1) was obtained
by numerically simulating the system for different initial
conditions and controls. This data was then curve fitted using
regression analysis. More details are in the Sec. VI. Similar
to the LIPM, this model assumes a constant COM height zc
and a constant SSP time Ts of 0.35 seconds. The polynomial
S2S map is shown in Eqns. (4) and (5); which also take the
form of ζpx´

k , v
´
k q “

“

fpx´
k , v

´
k q, gpx´

k , v
´
k q

‰1

fpx´
k , v

´
k q “ xN`

k “ α0 ` α1x
´
k ` α2v

´
k ` α3x

´
k v

´
k .. (4)

... ` α4px´
k q2 ` α5pv´

k q2

gpx´
k , v

´
k q “ vN`

k “ β0 ` β1x
´
k ` β2v

´
k ` β3x

´
k v

´
k ... (5)

... ` β4px´
k q2 ` β5pv´

k q2

Fig. 3: Model-based stepping. The stepping controller dictates the step size
uk to achieve desired velocity v˚.

IV. STEPPING CONTROLLERS

The S2S map from the analytical LIPM and regression
from nonlinear MuJoCo simulator were used to develop
three stepping controllers for stable walking. We assumed
that there is no double support phase during walking. The
spring constants of the heel and shin were increased to have
minimal spring deflection during foot-ground contact. We
also assumed that the COM is located at the hip because
the arms are fixed and the torso is kept vertically upright.
The knee joint of the stance leg is controlled to ensure the
position of the hip is at a desired constant height zc.

A. Model-based Stepping

For this section we will refer to Fig. 3. The current state
of the model is (x´

k´1, v
´
k´1). The stepping controller is the

step length uk required to achieve the velocity v˚ at v`
k .

Therefore the S2S dynamics map can be expressed in terms
of the stepping controller

s`
k “ ζ

`

x`
k´1 ´ x´

k ,v
´
k

˘

“ ζ
`

uk,v
´
k

˘

(6)

The state x`
k´1 is uncontrollable because the robot is

underactuated at the toe pitch joint. Therefore the only con-
trollable parameter at every step is the state x´

k . The states
(x`

k´1, v
`
k´1) are unknown at the current robot state. One way

of proceeding with this controller is by predicting the states
using the S2S dynamics maps (rx̃`

k´1, ṽ
´
k s “ ζpx´

k´1, v
´
k´1q)

from Eqns. (3) for the LIPM-based analytical model and
Eqns. (4) and (5) for the simulator-based regression model.
Note the tilde over the states denotes a predicted state.

The next step is solving for x´
k to achieve the velocity v˚

at v`
k . We can rearrange the S2S equations into Eqn. (7) to

solve for x´
k using the LIPM.

x´
k “

`

v`
k ´ CT ṽ

´
k

˘

Tc{ST (7)

Similarly, we can rearrange the S2S equations into a
quadratic equation to solve for x´

k using the regression model

x´
k “ ´A ` 0.5β4pA2 ´ 4 pβ4qBq0.5 (8)

where A “ β1 ` β3ṽ
´
k and

B “ β5pṽ´
k q

2
` β2ṽ

´
k ` β0 ´ v`

k . The stepping controllers
are uL

k for the LIPM and uN
k for the regression model

uL
k “ x̃`

k´1 ´ x´
k “ CT ¨ x´

k´1 ` TcST v
´
k´1 ´ x´

k (9)

uN
k “ x̃`

k´1 ´ x´
k “ fpx´

k´1, v
´
k´1q ´ x´

k (10)

Cyclic States: A cyclic gait is when the state at an instant
maps back to itself after a step. The cyclic state x˚´ and
velocity v˚ may be solved by setting v`

k “ v´
k “ v˚ and

solving for x´
k “ x˚´ in Eqn. (3) for LIPM-based stepping

and Eqn. (5) for simulator-based stepping.

B. Model-based Stepping with Feedback

We assume that the model S2S dynamics are different from
the robot dynamics by an additive state error term ω

ζR “ ζ
`

x´
k , v

´
k

˘

` ω (11)

where ζR is the robot S2S dynamics. The predicted
states px̃`

k´1, ṽ
`
k´1q will likely not equal the actual states

px`
k´1, v

`
k´1q.

1) Analytical, LIPM based: To add robustness to the
stepping controller a feedback term can be implemented with
gains K properly tuned to drive the error S2S dynamics
between the model and the robot model to zero

uR “ uL
k ` KpsptqR ´ sLkq (12)

where uR is the step size realized on the robot, sR is the
current state vector of the robot and sLk is the state vector of
the LIPM-predicted states x`

k´1 and v`
k´1. Stable values for

K were found as in [20].
2) Regression, simulator based: Similarly, for regression-

based stepping, we can add a feedback term with gains K.

uR “ uN
k ` KpsptqR ´ sNk q (13)

Eqn. (13) is a discrete nonlinear controller which can be
linearized about an equilibrium point. Using Eqns. (4) and
(5), the error S2S dynamics becomes Eqn. (14).

ek`1 “ (14)
„

f
``

x`R
k ´ x`N

k

˘

´
`

uR
k ´ uN

k

˘

,
`

v`R
k ´ v`N

k

˘˘

g
``

x`R
k ´ x`N

k

˘

´
`

uR
k ´ uN

k

˘

,
`

v`N
k ´ v`N

k

˘˘

ȷ

“

„

f ppexkq ´ pK pekqq , pevkqq

g ppexkq ´ pK pekqq , pevkqq

ȷ

An equilibrium ek`1 “ ek exists at pex˚, ev˚q “ p0, 0q.
Linearizing the error dynamics near the equilibrium point
yields

á
qk`1 “ J

á
qk (15)

where J is the Jacobian of the system, qk “ pexk ´ ex˚q,

rk “ pevk ´ ev˚q, and á
qk “

„

qk
rk

ȷ

. The system is now

in the form xk`1 “ Axk. K can then be solved for such
that all the eigenvalues (λ) of J evaluated at the equilibrium
point are |λ| ă 1 making the system asymptotically stable.

C. Footstrike-corrected Stepping

Although the stepping controllers shown in Eqns. (12)
and (13) achieve stable walking patterns when properly
tuned, there are two terms that accumulate errors. The first
term is in the approximated states x̃`

k´1 and ṽ`
k´1 and the

second term is in the S2S dynamics error of states x`
k and

v`
k . We introduce a footstrike-corrected stepping controller,

Eqn. (16), and a footstrike-corrected stepping controller with
feedback, Eqn. (17), to improve the regression-based S2S
approximation.

u1
k
N

“ xptq`R
k´1 ´ x̃´

k (16)

uR “ u1
k
N

` K
`

sptqRk ´ sNk
˘

(17)

In this approach, the step size u1
k
N is updated at every time

step using the state x`R
k´1 of the robot. This updated state is

then used to solve for x̃´
k such that v`

k “ v˚ is achieved.
Eqn. (8) is used to solve for x̃´

k given v`
k and v´

k . State x̃´
k

can be expressed in terms of x´N
k plus an error term c1 that

arises from the differences between x`R
k´1 and x`N

k´1.

x̃´
k “ c1 ` x´N

k (18)

The value of c1 will be small for models where x`R
k´1 is close

to x`N
k´1. Solving for x´R

k ´ x´N
k yields Eqn. (21)

����xptq`R
k´1 ´ x´R

k “����xptq`R
k´1 ´ x̃´

k ` K
`

sptqRk ´ sNk
˘

(19)

x̃´
k ´ x´R

k “ K
`

sptqRk ´ sNk
˘

(20)

x´R
k ´ x´N

k “ c1 ` K
`

sNk ´ sptqRk

˘

(21)

which is used to solve for the error S2S dynamics.

ek`1 “ (22)
„

f
``

x´R
k ´ x´N

k

˘

,
`

v´R
k ´ v´N

k

˘˘

g
``

x´R
k ´ x´N

k

˘

,
`

v´R
k ´ v´N

k

˘˘

ȷ

“

„

f ppK pekq ´ c1q , pevkqq

g ppK pekq ´ c1q , pevkqq

ȷ

The nonlinear controller can be linearized about the equilib-
rium point and gains K can be solved for such that for small
values of c1 the system is stable.

V. JOINT-LEVEL CONTROL

The joint-level controllers consist of a gravity com-
pensation feed-forward controller and a PD (proportional-
derivative) feedback controller for position and velocity
control of the leg actuators. The PD controller drives the
actuators to the desired joint trajectory. The joint trajectories
of the swing leg are generated by running inverse kinematics
on the Cartesian space foot trajectory. The stance leg uses
the knee actuator to maintain a desired constant height and
the hip pitch and roll actuators to keep the torso upright. The
toe actuators of the stance foot are given zero torque and the
toe actuators of the swing foot keep the foot parallel to the
ground. The arm actuators are kept at a fixed configuration.

A. Gravity Compensation

Gravity compensation at the joints is achieved by modeling
the robot with a floating base. The equations of the robot’s
dynamics, and holonomic force constraints are over-defined
because they include dependent degrees of freedom due to
the closed-loop chain. Fh are the holonomic forces and FG

are the ground reaction forces.

Mpqq:q ` Cpq, 9qq ` Gpqq “ Bτθ,s ` JT
GFG ` JT

h Fh (23)

Jh:q ` 9Jh 9q “ 0 (24)

The holonomic constraints include a distance constraint on
the closed chain of each leg and a position constraint on
the stance foot. For simplicity, the toe rod closed chains are
modeled as an open chain with actuation at the toe pitch and
roll joints. The open-chain dynamics of the legs are projected
onto the constrained dynamics to yield the system in minimal
coordinates (see [21] for more details). Once the system is
in minimal coordinates, we assume the floating base’s six
virtual joints provide no force or torque, and the shin and
heel spring joint torques are calculated using their respective
spring constants Ks and deflection xs. The leg motor torques
and constraint forces are solved for using inverse dynamics
on the gravity terms similar to what was done in [20].

B. Joint Trajectory and PD control

The biped is modeled as a compass walker with a point
mass at the COM and point feet. Inverse kinematics is done
on the foot position for proper foot placement. During the
stance phase, the toe motors are given zero torque to allow
the toe joints to rotate: allowing an inverted pendulum-like
behavior. The knee is used to maintain an approximately
constant desired COM height, and the hip pitch joint of the
stance leg is used to keep the torso vertically upright. In the
2D case, the position of the hip roll and yaw joints are fixed.

A position and velocity trajectory of the swing foot
is generated using a 5th-order polynomial. In the vertical
direction, the trajectory is split into two such that the foot
moves up to a specified step height and down to the floor in
Ts seconds. The horizontal trajectories are model-dependent
and are expressed next.

1) Model-based stepping: When using model-based step-
ping, a trajectory is generated at every footstrike event. The
final target velocity is zero, and the targeted final position
along the x-axis is dictated by the stepping controller output
u
L{N
k .

x ptq
foot
k`1 “ traj

´

u
L{N
k

¯

(25)

2) Model-based stepping with feedback: Two trajectories
are generated in the x direction when using a model-based
stepping controller with feedback. The first trajectory is gen-
erated at every footstrike event using model-based stepping
like Eqn. (25). The second trajectory is updated at every
time step; where it begins at the starting position of the foot
and finishes at the step length dictated by feedback stepping
uR. Both polynomial trajectory equations are summed with
time-dependent weights such that the first trajectory has more
weight at the beginning of the step and the second trajectory
has more weight at the end of the step.

x ptq
foot
k`1 “

ˆ

1 ´
t

Ts

˙

traj
´

u
L{N
k

¯

`

ˆ

t

Ts

˙

traj
`

uR
˘

(26)

Newton’s method is used to solve the inverse kinematics
of the foot trajectory during the swing phase. The shin and
heel springs are assumed to be stiff and have zero deflection
simplifying the closed chain to a parallel four-bar linkage

as shown in Fig. 1(b). Similarly, body Jacobians are used to
compute the velocity. The joint-level controller is

τm “ τg ` Kppθdes ´ θq ` Kdp 9θdes ´ 9θq (27)

where τm is the motor torque, τg is the gravity compensation
torque, θdes and 9θdes are the desired joint position and
velocity, respectively.

VI. METHODS

A. Data Collection using simulator
MuJoCo is an advanced simulator for multi-body dynam-

ics and contacts. MuJoCo was used to run 2D forward
walking simulations with different walking parameters and
collect S2S data. LIPM-based stepping was applied so the
robot could achieve several steps without falling. x´

k , v´
k ,

and v˚ were varied between trials and for every step taken
x´
k ,v´

k , x`
k , and v´

k`1were stored parameters. The stepping
controller, Eqn. (12), was used to vary the step size and
transition to an orbital state at v˚. The robot was allowed to
take up to six steps, but the trial could end sooner if a fall or
a slip were detected. Such parameters leading to a fall or slip
were labeled as infeasible. The resulting feasible/infeasible
dataset was used to define a classification boundary using
support vector machine classification. The feasible dataset
was used to test the accuracy of the LIPM dynamics and
develop an improved model using polynomial regression. An
overview of the data collection method is shown in video [22]
at 0:05.

B. Feasible Boundary from simulator data
A support vector machine (SVM) classification model was

used to approximate the boundary of the feasible data set.
The SVM binary classification algorithm from the MATLAB
stats toolbox with a polynomial kernel function was used
to search for the optimal hyperplane that splits the data
into two classes, feasible and infeasible. A training set of
693 combinations of x´

k and v´
k was obtained from the

LIPM-stepping simulation and was used to train the SVM
classifier. The decision boundaries of the SVM classifier
were approximated using two lines of best fit of the form
shown in Eqn. (28) where ωipxq is the left (i “ 1) or right
(i “ 2) decision boundary line. Eqn. (29) shows the SVM
classifier equations.

ωi pxq “ ci`di ¨ x (28)

hpxjq “

$

’

’

&

’

’

%

`1 (feasible) if c1 ` d1 ¨ xj ě ω1

and c2 ` d2 ¨ xj ď ω2

´1 (not feasible) if c1 ` d1 ¨ xj ă ω1

or c2 ` d2 ¨ xj ą ω2

(29)
C. Polynomial Regression for S2S map from simulator data

Although the LIPM yields a linear set of the S2S equa-
tions, there will be incongruences between the LIPM and full
nonlinear dynamics. Regression analysis was performed on
the simulation data of the robot in MuJoCo to better capture
the robot dynamics. The result was a polynomial regression
model shown in Eqns. (4) and (5).

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

xk
- (m)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

v k- (
m

/s
)

Feasible
Infeasible
Support Vectors
SVM Decision Boundary
SVM Linear Boundary

Fig. 4: Feature space and optimal hyperplane of test set.

D. Quadratically Constrained Quadratic Program

An optimization problem was formulated to find the
inputs x´

k and v´
k that transition the robot to a cyclic

gait while minimizing a cost function. The cost function is
the squared difference between the outputs and the desired
states: Cost “ A

`

ṽ´
k`1 ´ v´

k`1

˘2
`B

`

x̃´
k`1 ´ x´

k`1

˘2
. The

weights A and B can be tuned to give more importance
to achieving the desired foot placement or COM velocity.
The optimal x´

k is used as the input x̃´
k to the model-based

stepping controllers. The constraints include the regression
equations as well as the linear decision boundary lines. The
problem can be expressed as a quadratically constrained
quadratic program shown here in matrix form

minimize
y

0.5yTHy ` fTy (30)

subject to: 0.5yTQiy ` kT
i y ` ji “ 0 (31)

pTy ă b0, pTy ą b1 (32)
LB ď y ď UB (33)

where y “
“

x´
k`1 v´

k`1

‰T
, f , and H are user chosen

constants in the cost function. Eq. (31) accounts for the
nonlinear equality constraints composed of the polynomial
regression equation Eq. (5). Eq. (32) accounts for the linear
inequality constraints composed of the SVM classifier con-
straints Eq. (29). The lower (LB) and upper bounds (UB) are
set to be [-0.5, 0] and [0.6, 1.2], respectively.

VII. RESULTS

A. Support Vector Machine Classification

Fig. 4 shows the feature space of the training set along
with the SVM classification boundary lines where the blue
dots are feasible samples and the red dots are infeasible
samples. The black line is the SVM optimal hyperplane
contour line, and the dashed green line is the approximated
linear boundary used as the decision boundary for the model.
The overall classification model has an accuracy of 95.8%,
and the precision in predicting feasible is 99.7%.

(a) LIPM x`
k absolute error (b) Regression x`

k absolute error

(c) LIPM v`
k absolute error (d) Regression v`

k absolute error

Fig. 5: Surface plots of the S2S modelling errors.

B. Quadratic Polynomial Regression

The coefficients of the regression model are
α0:5 “ r´0.0002, 1.7871, 0.4268, 0, 0.0968, 0s and
β0:5 “ r´0.0245, 4.0076, 1.5064, 0.5879, 1.1168, 0.1221s

all with p-values ă 0.01. The adjusted R-squared value for
the regression analysis was 0.988 for x`

k and 0.987 for v`
k .

The mean absolute error of the regression model was 0.008
m for x`

k and 0.0285 m/s for v`
k marking an improvement

of 22.5% and 60.8%, respectively, over the LIPM. Fig. 5
shows the S2S modeling absolute errors of the test set
using the LIPM (left) and the regression model (right). The
S2S COM position is captured well using both models.
As shown in Fig. 5(a) and Fig. 5(b), both models yield an
absolute error of less than 0.02 m for most of the parameter
space. The S2S COM velocity is better captured across
all of the test set using the regression model as shown in
Fig. 5(d).

C. Stepping Control: tracking a reference velocity

We tested the model and controller framework’s ability to
follow a reference velocity profile vdesired. The mean abso-
lute error was used as a performance metric; it was calculated
by subtracting the reference velocity from the actual at every
step and taking the mean. The LIPM stepping controller
with no feedback, Eqn. (9), gave a mean absolute error
of 25.96% while the regression model stepping controller
with no feedback, Eqn. (10), had a mean absolute error of
12.69%; an improvement of 13.27% over the LIPM as shown
in Fig. 6a. The LIPM stepping controller with feedback,
Eqn. (12), gave a mean absolute tracking error of 22.45%
while the regression model stepping controller with feedback,
Eqn. (13), gave a mean absolute error of 14.3%; an improve-
ment of 8.15% over the LIPM-based stepping controller with
feedback as shown in Fig. 6b. The new stepping controller
with footstrike correction, Eqn. (17), yielded a mean absolute
error of 9.48%, which is an improvement of 4.82% over the

15 20 25 30 35 40 45
time (s)

0

0.5

1

ve
l (

m
/s

) v
COM
R v

COM
L v

desired

(a)

15 20 25 30 35 40 45
time (s)

0

0.5

1

ve
l (

m
/s

) v
COM
R v

COM
L v

desired

(b)

15 20 25 30 35 40 45
time (s)

0

0.5

1

ve
l (

m
/s

) v
COM
uf v

COM
f v

desired

(c)
Fig. 6: Velocity tracking using the stepping controller (a), stepping con-
troller with feedback (b) and comparison between the LIPM (vLCOM) and
regresion model (vRCOM). (c)Velocity tracking using regression model with
feedback (vfCOM) and footstrike-corrected feedback control (vufCOM).

regression stepping controller with feedback (Eqn. (13)) as
shown in Fig. 6c.

D. Footstrike-corrected Controller

Using a footstrike-corrected stepping controller reduces
the velocity tracking errors, as seen in Fig. 6c. Updating the
stepping controller using the robot state x`R

k´1 as opposed to
the model-predicted state x̃

`L{N
k´1 eliminates the prediction

error seen in model-based stepping control. Furthermore, it
makes the controller robust to perturbations that the robot
may experience during the stance phase. A simulation was
conducted where the robot walked forward at steady-state
velocity. Two controllers were used: a model-based stepping
controller with feedback and a model-based footstrike cor-
rected controller. To test the controller’s ability to withstand
perturbations while walking, we applied a 175N force for
100ms at the torso along the x-direction (forward direction)
in the middle of the stance phase. The force caused the robot
dynamics to deviate from the S2S dynamics prediction.

The COM position xcom and footstrike state x´
k are shown

in Fig. 7. The footstrike COM velocity state v´
k is shown in

Fig. 8. The perturbation occurs at point paq causing v´
k of

the next step to increase; this is illustrated by points pbq and
pdq. However, at point pbq, the footstrike-corrected controller
has updated the model’s state and takes a longer step x´

k .
Meanwhile, at point pdq, the model-based controller does
not update the model and takes the step size x´

k it would
normally take without a perturbation. The result is that at
pcq, the longer step of the footstrike-corrected controller has
reduced the velocity; conversely, at point peq, a short step
causes the COM velocity to spike, causing the robot to
become unstable [22](video at 1:26).

E. Optimization: Stepping over obstacles

We tested the model and optimization framework’s ability
to plan motion on terrain with floor obstacles. The optimiza-

Fig. 7: Position data of COM during perturbation trial using a footstrike-
corrected controller (Top) and a model-based controller (Bottom).

Fig. 8: Velocity data of COM during perturbation trial using a footstrike-
corrected controller (Top) and a model-based controller (Bottom).

tion’s cost gains vary depending on the robot’s environment
and the task requirements. Bigger weights are given to
velocity cost when foot placement is not critical; such is
the case when no obstacles are ahead and a given walking
velocity is desired. When foot placement is vital, bigger
weights are given to position cost; such is the case when
obstacles are ahead and the robot must precisely place its
feet to avoid tripping. When the robot is closer than 1.5 m
from the obstacle, the larger gains are switched from velocity
to foot placement.

An additional linear constraint is added to the optimization
problem constraining the footstrike location to be before
or after the obstacle. One issue with this formulation is
that we need to solve multiple quadratic programs for the
footstep planning, one for each feasible footstep location
encompassed by obstacles on either side. The choice of the
obstacles was such that only two quadratic programs had
to be solved, one for stepping before the obstacle and one
after the obstacle. After solving both problems, the solution
with the lowest cost was chosen as x̃´

k in the regression
model-based stepping controller with feedback (Eqn. (13)).
The control x̃´

k was bounded by the feasibility boundary lines
and the training set boundary, limiting the robot’s ability to
take longer or shorter steps when necessary. The gains of
the cost function were varied accordingly to give priority
to velocity or foot placement as the robot approached the
obstacles.

Fig. 9 shows a step-by-step simulation of Digit success-
fully walking over two obstacles using the regression model
stepping controller with feedback (see video at 2:31 in Ref.
[22]). Fig. 10 illustrates the states of the robot during the
simulation where the time point paq is the location of the
first obstacle and the time point pbq is the location of the

Fig. 9: Simulation of Digit avoiding a trip by stepping over two obstacles
(indicated by the red arrow).

Fig. 10: Velocity (top) and COM position (bottom) with respect to stance
foot of Digit while walking over obstacles.

second obstacle. From the figure, we see that Digit takes
a very short step before stepping over the obstacle; this
causes v´

k of the following step to increase. Subsequently, a
larger step is taken to clear the obstacle. The robot transitions
back to the desired steady-state velocity momentarily before
encountering the next obstacle. Again, it takes a very small
step almost in line with the other foot before taking a longer
step to clear the obstacle.

VIII. DISCUSSION

A polynomial regression model that better predicts the
S2S dynamics of the robot was created via 2D forward
walking simulations using LIPM-based stepping controllers.
Although the LIPM is a good one-size-fits-all approach to
modeling bipedal walking, it assumes a point mass which
may produce modeling errors for heavy bipeds with heavy
torsos and swinging arms like Digit. Modeling errors can be
fixed at the controller level using an integral feedback term or
a state-dependent bias. We proposed an alternative solution:
using simulated data from the region near the periodic gait to
fit the S2S dynamics of the robot into a polynomial regres-
sion model to obtain a wider control region. The model was
extrapolated using only two parameters: footstrike position
and COM velocity at footstrike. Adding more parameters to
the model, such as angular momentum, can further enhance
the model. Although the model was tested in the 2D case,
the methodology can be extrapolated to the 3D case as was
done using the LIPM in [17], [19], [20].

The proposed approach captures some of the non-
linearities not captured by the LIPM. Comparing the LIPM
stepping controllers and regression model stepping con-
trollers shows that the regression model stepping controller
performs better at velocity control. Improving the model,
therefore, also enhances the controller. One limitation of
the current model is that it relies on a constant stepping
frequency and COM height. This limits the ability to use

any step width and walking velocity combination, making
motion planning and obstacle avoidance challenging. Future
work will focus on addressing these limitations.

A footstrike-corrected feedback controller was introduced
to reduce the errors in predicting the footstrike states. This
controller is more robust than the model-based stepping
controller and can withstand certain perturbations occurring
at midstance. One limitation that this controller does not
address is that sometimes the steps it takes to recover might
not lie inside the feasible set. The robot may eventually
become unstable and fall. One possible solution is optimizing
the foot placement over a window of several steps such
that the robot can recover from a perturbation after several
steps lying inside the feasible boundaries. Adding more
constraints such as kinematic limits may also enhance the
control robustness.

The simple quadratic models and linear constraints al-
lowed us to solve the quadratically constrained quadratic
program in less than 100 iterations using a sequential
quadratic programming (SQP) algorithm; this is promising
for real-time control and for further exploring alternative
cost functions such as reduction in motor power or cost of
transport. A simple optimization problem was formulated for
stepping over obstacles. We limited the planning window to
one step. Adding more steps for planning may reduce costs,
but the sizeable stepping combination would need suitable
heuristics to be solved quickly.

IX. CONCLUSIONS AND FUTURE WORK

This paper presented a data-driven approach to fitting
the S2S dynamics of Digit into a polynomial regression
model using data generated from a LIPM-based control walk-
ing simulation. The regression model was used to develop
three types of controllers: model-based, model-based with
feedback, and footstrike-corrected controllers. The proposed
model is more precise at predicting the S2S dynamics of the
robot, which in turn improves the performance of the con-
trollers. We formulated a quadratically constrained quadratic
program to solve for the optimal control and used SVM
modeling to approximate a feasibility boundary line con-
straint. We demonstrated that all three stepping controllers
developed with the regression model display fewer velocity
tracking errors than LIPM-based controllers. In addition,
we showed that we could use an optimization problem to
plan over terrain with obstacles with high accuracy and
few iterations. We presented a more precise data-driven
approximation of the S2S dynamics of Digit, which in turn
improves the model-based controllers compared to the LIPM.
A footstrike-corrected stepping controller was presented, fur-
ther enhancing the model-based controllers by reducing the
points of error in the control formulation. Computationally
friendly models and controls will be developed with a similar
data-driven approach in future work. The evaluation of this
approach on Digit will be performed in hardware.

REFERENCES

[1] S. Kajita and K. Tani, “Study of dynamic biped locomotion on
rugged terrain-theory and basic experiment,” in Proc. of the IEEE

International Conference on Robotics and Automation, Sacramento,
California, USA, 1991, pp. 741–746.

[2] J. Grizzle, G. Abba, and F. Plestan, “Asymptotically stable walking
for biped robots: Analysis via systems with impulse effects,” IEEE
Transactions on Automatic Control, vol. 46, no. 1, pp. 51–64, 2001.

[3] D. Hobbelen and M. Wisse, “Limit cycle walking,” Humanoid Robots
Human-like Machines, pp. 277–294, 2007.

[4] S. Strogatz, Nonlinear dynamics and chaos. Addison-Wesley Read-
ing, 1994.

[5] J. B. Dingwell and H. G. Kang, “Differences between local and orbital
dynamic stability during human walking,” Journal of biomechanical
engineering, vol. 129, no. 4, pp. 586–593, 2007.

[6] T. McGeer, “Passive dynamic walking,” The International Journal of
Robotics Research, vol. 9, no. 2, pp. 62–82, 1990.

[7] S. Collins, M. Wisse, and A. Ruina, “A three-dimensional passive-
dynamic walking robot with two legs and knees,” The International
Journal of Robotics Research, vol. 20, no. 7, pp. 607–615, 2001.

[8] S. Collins and A. Ruina, “A bipedal walking robot with efficient and
human-like gait,” in Proceeding of 2005 International Conference on
Robotics and Automation, Barcelona, Spain, 2005.

[9] P. A. Bhounsule, J. Cortell, A. Grewal, B. Hendriksen, J. D. Karssen,
C. Paul, and A. Ruina, “Low-bandwidth reflex-based control for lower
power walking: 65 km on a single battery charge,” International
Journal of Robotics Research, 2014.

[10] E. Westervelt, J. Grizzle, and D. Koditschek, “Hybrid zero dynamics
of planar biped walkers,” IEEE Transactions on Automatic Control,
vol. 48, pp. 42–56, 2003.

[11] A. Hereid, E. A. Cousineau, C. M. Hubicki, and A. D. Ames,
“3d dynamic walking with underactuated humanoid robots: A direct
collocation framework for optimizing hybrid zero dynamics,” in 2016
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2016, pp. 1447–1454.

[12] C. Chevallereau, J. Grizzle, and C. Shih, “Asymptotically stable walk-
ing of a five-link underactuated 3-d bipedal robot,” IEEE Transactions
on Robotics, vol. 25, no. 1, pp. 37–50, 2009.

[13] J. Seipel, M. Kvalheim, S. Revzen, M. A. Sharbafi, and A. Seyfarth,
“Conceptual models of legged locomotion,” in Bioinspired Legged
Locomotion. Elsevier, 2017, pp. 55–131.

[14] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A step
toward humanoid push recovery,” in 2006 6th IEEE-RAS international
conference on humanoid robots. IEEE, 2006, pp. 200–207.

[15] P. A. Bhounsule, M. Kim, and A. Alaeddini, “Approximation of
the step-to-step dynamics enables computationally efficient and fast
optimal control of legged robots,,” in ASME 2020 International Design
Engineering Technical Conferences and Computers and Information in
Engineering Conference. American Society of Mechanical Engineers,
2020.

[16] E. Hernandez-Hinojosa, A. Satici, and P. A. Bhounsule, “Optimal
Control of a 5-Link Biped Using Quadratic Polynomial Model of Two-
Point Boundary Value Problem,” ser. International Design Engineering
Technical Conferences and Computers and Information in Engineering
Conference, vol. Volume 8B: 45th Mechanisms and Robotics Confer-
ence (MR), 08 2021.

[17] X. Xiong and A. Ames, “3-d underactuated bipedal walking via h-lip
based gait synthesis and stepping stabilization,” IEEE Transactions on
Robotics, 2022.

[18] G. A. Castillo, B. Weng, W. Zhang, and A. Hereid, “Robust feed-
back motion policy design using reinforcement learning on a 3d
digit bipedal robot,” in 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2021, pp. 5136–5143.

[19] X. Xiong and A. D. Ames, “Orbit characterization, stabilization and
composition on 3d underactuated bipedal walking via hybrid passive
linear inverted pendulum model,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2019, pp. 4644–
4651.

[20] X. Xiong and A. Ames, “3d underactuated bipedal walking via
h-lip based gait synthesis and stepping stabilization,” 2021. [Online].
Available: https://arxiv.org/abs/2101.09588

[21] P. Zhou, A. Zanoni, and P. Masarati, “Projection continuation for min-
imal coordinate set dynamics of constrained systems,” in ECCOMAS
Thematic Conference on Multibody Dynamics. Budapest University
of Technology and Economics, 2021, pp. 184–196.

[22] [Online]. Available: https://youtu.be/MniABg2jGEA

