
MULTIMEDIA EXTENSION

Design, modeling and control of a differential drive rimless wheel

that can move straight and turn

Most recent modification on May 19, 2022.

Sebastian Sanchez a, Pranav A. Bhounsuleb,
a Dept. of Mechanical Engineering,

University of Texas San Antonio
One UTSA Circle, San Antonio, TX 78249, USA.

Currently at Boardwalk Robotics, Pensacola, Florida.
Email: sbaz.93@gmail.com

b Department of Mechanical and Industrial Engineering,
University of Illinois at Chicago,

842 W. Taylor St., Chicago, IL 60607, USA.
Corresponding author email: pranav@uic.edu

1 Notation

1.1 Robot constant parameters

Symbol Value Parameter description
m1 2.46 kg Mass of wheel.
m2 4.45 kg Mass of torso.
J1 0 Inertia of wheel in the planar direction (fore-aft).
J2 0 Inertia of torso in the planar direction (fore-aft).
Jd 0.052 kg −m2 Inertia of wheel in the vertical direction (top-down).
`0 0.26 m Leg length when spring is not compressed.
c 0.06 cm Distance of torso COM along its axis.
k 1315 N/m Spring constant.
cv 105 Ns/m Viscous friction in the spring.
2b 0.31 m Distance between the two rimless wheels.
n 10 Number of spokes.
g 9.81 m/s2 Gravitational constant.
G 5.4 Gear ratio.
Kt 0.034 Nm/A Motor torque constant.

1.2 Simulation variables

Symbol Variable description
θl angle between the leg and vertically downward direction for left wheel in the 3D model.
θr angle between the leg and vertically downward direction for right wheel in the 3D model.
θ angle between the leg and vertically downward direction for the 2D model (= 0.5(θl + θr)).
θd difference between left and right wheel stance angle (= 0.5(θl − θr)).
φ angle between the torso and vertically downward direction.

1



` length of the virtual leg in contact with the ground in the 2D model.
β heading angle of the rimless wheel.
Ii motor current in i = l, r left and right motor.
Ti motor torque in i = l, r left and right motor.
Ta average of the left and right motor torque.
Id differential current for turning.
Td differential torque for turning.
(x0c , y

0
c ) coordinates of the point midway between the wheels in world frame

(x1c , y
1
c ) coordinates of the point midway between the wheels in robot frame

vP velocity of point P as so on.
aP acceleration of point P as so on.
v−P , φ− velocity of point P, angle before support transfer with superscript −.
v+P , φ+ velocity of point P, angle after support transfer with superscript +.
êr, êθ unit vectors in r and θ direction.
→
H

+

/P

→
H
−
/P Angular momentum about point P after and before transition.

→̇
H/P Rate of change of angular momentum about point P and so on.
→
M/P External angular moment about point P and so on.

2 Robot model

g

π
n
2 c

m1

m2

0

θ

φ

P

Q

G2

G1

k cv

0

ê

θ̂e

r



êr

θ̂e 

(a) robot constant parameters (b) robot simulation parameters

Figure 1: The 2D sagittal plane model: The robot is progressing from the left to the right direction.
(a) robot constant parameters given in Sec. 1.1 and (b) some of the robot simulation parameters given in
Sec. 1.2. Although the robot has 10 legs on each side, we have shown only 8 spokes.

2



2.1 2D sagittal plane model

2.1.1 Degrees of freedom

We use three independent degrees of freedom to describe the motion of the model in the sagittal
plane. These are the length of the spoke that is touching the ground, `, the angle made by the
spoke touching the ground with the vertical, θ, and the angle made by the torso with the vertical,
φ.

2.1.2 Kinematics in stance phase

The acceleration of the center of mass of the rimless wheel
→
aG1 and torso

→
aG2 are obtained from

Fig. 1 (a)

→
aG1 = (῭− `θ̇2)êr1 + (2 ˙̀θ̇ + `θ̈)êθ1 (1)
→
aG2 =

→
aG1 − cφ̇2êr2 + cφ̈êθ2 (2)

where êr1 and êθ1 are coordinate axis attached to the rimless wheel and êr2 and êθ2 are coordinate
axis attached to the torso as shown.

2.1.3 Equations of motion in the stance phase

The equation of the stance phase are derived using the Fig. 1 (b). We need three equations to
describe the acceleration of the three degrees of freedom (῭, θ̈, φ̈). Two equations are obtained from
the principle of angular momentum and one equation is obtained from principle of linear momentum
balance as follows.

→̇
H/P =

→
M/P

→
rG1/P ×m1

→
aG1 +

→
rG2/P ×m2

→
aG2 +J1

→̈
θ + J2

→̈
φ =

→
rG1/P ×m1

→
g +

→
rG2/P ×m2

→
g (3)

→̇
H/G1

=
→
M/G1

→
rG2/G1

×m2
→
aG2 +J2

→̈
φ =

→
T a +

→
rG2/G1

×m2
→
g (4)

(m1
→
aG1 +m2

→
aG2) · êr1 = (

→
F −m1

→
g −m2

→
g ) · êr1

m1
→
aG1 ·êr1 +m2

→
aG2 ·êr1 = Fr −m1

→
g ·êr1 −m2

→
g ·êr1 (5)

where Fr = −k(`− `0)− cv ˙̀, k is the spring constant, cv is the damping in the leg, `0 is the spring
free length, and average torque Ta = 0.5(Tl + Tr).

From Eqns. 3, 4, and 5 we can write

AssẌss = bss, (6)

where Xss = {θ, φ, `}, Ass is a 3x3 matrix, and bss is a 3x1 vector. If Ai,j is the element on the
ith row and jth of Ass, and if bi is the ith row of bss then

A1,1 = c `m2 cos(θ − φ)− `2,m1 − `2,m2 − I1

3



A1,2 = −m2 c
2 + `m2 cos(θ − φ) c− I2

A1,3 = cm2 sin(θ − φ)

A2,1 = c `m2 cos(θ − φ)

A2,2 = −m2 c
2 − I2

A2,3 = cm2 sin(θ − φ)

A3,1 = 0

A3,2 = cm2 sin(θ − φ)

A3,3 = −m1 −m2

b1 = 2 ` ˙̀m1 θ̇ + 2 ` ˙̀m2 θ̇ + c gm2 sin(φ)− g `m1 sin(θ)− g `m2 sin(θ)

− 2 c ˙̀m2 θ̇ cos(θ − φ) + c `m2 θ̇
2 sin(θ − φ)− c `m2 φ̇

2 sin(θ − φ)

b2 = c `m2 sin(θ − φ) θ̇2 − 2 c ˙̀m2 cos(θ − φ) θ̇ − T2 + c gm2 sin(φ)

b3 = gm1 cos(θ)− Fr + gm2 cos(θ)− `m1 θ̇
2 − `m2 θ̇

2 + cm2 φ̇
2 cos(θ − φ)

2.1.4 Kinematics in support transfer

We denote the linear and angular position and velocities at the instance before support transfer
using the super-script (−) and instance after support transfer using the super-script (+) as shown
in Fig. 2.

→
v
+

G1
= ˙̀+ê+r1 + `0θ̇

+ê+θ1 , (7)

→
v
+

G2
=
→
v
+

G1
+ cφ̇+ê+θ2 , (8)

→
v
−
G1

= ˙̀−ê−r1 + `−θ̇−ê−θ1 , (9)

→
v
−
G2

=
→
v
−
G1

+ cφ̇−ê−θ2 . (10)

4



θ

φ

P

G2

+

+

+θ

φ

Q

G2
G1

-

P

-

-

(a) before support transfer (b) after support transfer

G1

Figure 2: Support transfer: The robot is progressing from the left to the right direction. (a) Instance
just before support transfer uses superscript (-) and (b) instance just after support transfer uses superscript
(+).

2.1.5 Equations of motion for support transfer

The equation relating the three degrees of freedom after support transfer to that before support
transfer are obtained by comparing the configuration of the robot before and after support transfer
as shown in Fig. 2. These are

`+ = `0 (11)

θ+ = θ− +
2π

n
(12)

φ+ = φ− (13)

where the first equation is based on the fact the new spoke that will contact the ground is not
stretched.

The equations relating the rate of change of the three degrees of freedom after support transfer
are derived using the notation in Fig. 2. The first two equations are derived by applying conservation
of angular momentum and the last one is derived by applying conservation of linear momentum

5



along the axial direction.

→
H

+

P =
→
H
−
Q

→
rG1/P ×m1

→
v
+

G1
+
→
rG2/P ×m2

→
v
+

G2
+J1

→̇
θ
+

+ J2
→̇
φ
+

=
→
rG1/Q ×m1

→
v
−
G1

+
→
rG2/Q ×m2

→
v
−
G2

+J1
→̇
θ
−

+ J2
→̇
φ
−

(14)

→
H

+

G1
=
→
H
−
G1

→
rG2/G1

×m2
→
v
+

G2
+J2

→̇
φ
+

=
→
rG2/G1

×m2
→
v
−
G2

+J2
→̇
φ
−

(15)

→
L
+
· ê+r1 =

→
L
−
· ê−r1

m1
→
v
+

G1
·ê+r1 +m2

→
v
+

G2
·ê+r1 = m1

→
v
−
G1
·ê−r1 +m2

→
v
−
G2
·ê−r1 (16)

In the Eqn. 16 we assume that there is no impulsive force along the stance leg direction. This is
because the spring force acts along the radial direction and can be considered to provide negligible
impulse force in the short support transfer duration.

We can combine Eqn. 14, 15, and 16 to get

AhsẊ
+
hs = bhs, (17)

where Xhs = {θ, φ, `}, Ahs is a 3x3 matrix, and bhs is a 3x1 vector. If Ai,j is the element on the
ith row and jth of Ahs, and if bi is the ith row of bhs then

A1,1 = −c `+m2 cos
(
θ+ − φ+

)
A1,2 = m2 c

2 + I2

A1,3 = −cm2 sin
(
θ+ − φ+

)
A2,1 = I1 + (`+)2m1 + (`+)2m2 − c `+m2 cos

(
θ+ − φ+

)
A2,2 = m2 c

2 − `+m2 cos
(
θ+ − φ+

)
c+ I2

A2,3 = −cm2 sin
(
θ+ − φ+

)
A3,1 = 0

A3,2 = −cm2 sin
(
θ+ − φ+

)
A3,3 = m1 + m2

6



b1 = I2 φ̇
− −m2

(
c cos

(
φ−

) (
˙̀− sin

(
θ−

)
− c φ̇− cos

(
φ−

)
+ `−θ̇− cos

(
θ−

))
− c sin

(
φ−

) (
˙̀− cos

(
θ−

)
+ c φ̇− sin

(
φ−

)
− `−θ̇− sin

(
θ−

)))

b2 = I1 θ̇
− + I2 φ̇

−

−m2

((
`0 sin

(
θ− +

2π

n

)
− c sin

(
φ−

)) (
˙̀− cos

(
θ−

)
+ c φ̇− sin

(
φ−

)
− `−θ̇− sin

(
θ−

))
−
(
`0 cos

(
θ− +

2π

n

)
− c cos

(
φ−

)) (
˙̀− sin

(
θ−

)
− c φ̇− cos

(
φ−

)
+ `−θ̇− cos

(
θ−

)))
+ m1

(
`0 cos

(
θ− +

2π

n

) (
˙̀− sin

(
θ−

)
+ `−θ̇− cos

(
θ−

))
− `0 sin

(
θ− +

2π

n

) (
˙̀− cos

(
θ−

)
− `−θ̇− sin

(
θ−

)))

b3 = ˙̀−m1 + ˙̀−m2 − cm2 φ̇
− sin

(
θ− − φ−

)

X0

Y0

b

(xc yc ),


X 1
Y1

b

(xc yc ),


β

(a) position at start (b) position at some point of time

left wheel

right wheel

θr

θl

Figure 3: The steering model: The robot is progressing from the left to the right direction. (a) The
world or fixed frame is X0 − Y0 (b) The local frame attached to the robot X1 − Y1. The angle between the
spoke in contact with the ground and vertical is θi and the corresponding angular rate is θ̇i, where i = r
for the right wheel and i = l for the left wheel. We keep a track of the center point between two wheels in
local frame, {x1c , y1c}, the world frame, {x0c , y0c}, and angle made by the perpendicular to the torso and world
frame, β, also known as the heading angle.

2.2 3D model: combining steering with sagittal model

Earlier we have derived the equations of motion in the 2D sagittal plane, namely the pitching motion
of the robot. Here we use differential drive kinematics formulation borrowed from differential drive
wheel robots [2] to describe motion in the heading or steering direction. We combine the sagittal
motion with the steering model to build the complete 3D model. Note that we ignore rolling in our
analysis.

7



2.2.1 Differential drive kinematics

We use the Fig. 3 to derive an expression for the kinematics of the robot for the heading motion.
We use two frames, X0 − Y0 is the fixed or world frame and X1 − Y1 is the local frame attached to
the torso and moves as the torso moves. In this exposition, we are interested in keeping track of
the mid-point on the torso (C), (xc, yc), and the heading angle β.

The velocity vector for C in frame X1 − Y1 is ċ1 = {ẋc1, ẏc1} then [2]

ẋc
1 = 0.5`(θ̇r + θ̇l)

ẏc
1 = 0

If the velocity vector for C in frame X0 − Y0 is ċ0 then the relation between the two velocity
vectors is

ċ0 = R0
1ċ

1 where R0
1 =

[
cos(β) − sin(β)
sin(β) cos(β)

]
(18)

Using ċ0 = {ẋ0c , ẏ0c}, we simplify the expressions

ẋ0c = 0.5`(θ̇r + θ̇l) cos(β) (19)

ẏ0c = 0.5`(θ̇r + θ̇l) sin(β) (20)

The angular velocity for heading β̇ may be obtained arguing about the change in heading as
the speed of the two sides of the rimless wheel changes.

β̇ = 0.5
`

b
(θ̇r − θ̇l) (21)

For given θ̇r, θ̇l, the Eqns. 19, 20, and 21 have to be integrated to find the movement of the center
point C in the world frame, x0c , y

0
c , β.

2.2.2 Equations for stance phase in 3D

There are a total of 7 equations that describe the motion of the robot in 3D. These are given by
ẋ0c , ẏ

0
c , β̇, φ̈,

῭, θ̈l, θ̈r. All these variables except the last two been defined, so we define them first and
summarize all the variables toward the end of the section.

First, we define the following θ and θd and their rates

θ = 0.5(θl + θr),

θ̇ = 0.5(θ̇l + θ̇r),

θd = 0.5(θl − θr),
θ̇d = 0.5(θ̇l − θ̇r).

8



With this notation, we can now find θ̈l and θ̈r

θ̈l = θ̈ + θ̈d,

θ̈r = θ̈ − θ̈d. (22)

Thus, we can replace the pair (θ̈l, θ̈r) with the pair (θ̈, θ̈d). Thus our equation set is ẋ0c , ẏ
0
c , β̇, φ̈,

῭, θ̈, θ̈d.
The first three are given by Eqn. 19, 20, and 21. The next three are given by Eqns. 3, 4, and 5.
The last one is given by

θ̈d =
Td
Jd

(23)

where Td is the net torque in the lateral plane and Jd is the inertia along the vertical axis. Next, we
derive expressions for Td and Jd. If traction forces between the contact spoke in the sagittal plane
for the two wheels is Fl = Tl/`0 and Fr = Tr/`0 (where we assume that the spring compression is
negligible ` ∼ `0). Thus,

Td = (Fl − Fr)b

= (Tl − Tr)
b

`0
(24)

To derive an expression for Jd (inertia), we assume that the robot is not translating ẋ0c = ẏ0c = 0
and the two wheels are at rest θ̇l = θ̇r = 0. The net kinetic energy of the system is

KE = 0.5Jbβ̇
2 + 2× (0.5Jwβ̇

2 + 0.5m1b
2β̇2)

= (0.5Jb + Jw +m1b
2)β̇2

= 0.5Jdβ̇
2. (25)

where Jb is the inertia of the body about the vertical axis and Jw is the inertia of the wheel about
the vertical axis. Thus, we have

Jd = Jb + 2(Jw +m1b
2) (26)

Note that Eqn. 25 may also be derived from parallel axis theorem.

2.2.3 Collision condition

The collision condition for the left side wheel and right side wheel are given by

hl = `− cos(θ−l )− `0 cos

(
θ−l +

2π

n

)
= 0,

hr = `− cos(θ−r )− `0 cos

(
θ−r +

2π

n

)
= 0. (27)

Both these conditions are checked during integration. We can have three conditions: (1) spokes on
both sides collide simultaneously, thus hl = 0 and hr = 0 are both true simultaneously, (2) only
the left side spoke strikes the ground, thus only hl = 0 is true, and (3) only the right side spoke

9



strikes the ground, thus only hr = 0 is true.

2.2.4 Equations for support transfer in 3D

We make the assumption that the net difference of velocity before collision is that same as that
after collision. Thus

∆θ̇+ = θ̇+l − θ̇
+
r = θ̇−l − θ̇

−
r (28)

For the support transfer we need to find the following positions: `+, φ+, θ+l , θ
+
r and their correspond-

ing rates: ˙̀+, φ̇+, θ̇+l , θ̇
+
r . Note that the steering coordinates after support transfer ẋ+0

c , ẏ+0
c , β̇+ may

be found using the positions and rates after support transfer using Eqns. 19, 20, and 21. The sup-
port transfer may involve any of the three conditions

(1) Collision of left and right side spoke simultaneously

In order to find all angles, we define the angle θ− as follows

θ− = 0.5(θ−l + θ−r ) (29)

Next, we can find `+, θ+, φ+ using Eqns. 11, 12, and 13 respectively. The angles θ+l and θ+r are
given by

θ+l = −θ−l (30)

θ+r = −θ−r (31)

In order to find all rates, we define the rate θ̇− as follows

θ̇− = 0.5(θ̇−l + θ̇+r ) (32)

Next, we find ˙̀+, θ̇+, and φ̇+ using Eqn. 17. Finally, we can find the rate θ̇+l and θ̇+r using

θ̇+l = θ̇+ + ∆θ̇+

θ̇+r = θ̇+ −∆θ̇+

(2) Collision of left side spoke only

All conditions are similar to the simultaneous collision except for Eqn. 29, 30, 31, and 32 are
replaced in the same order to be

θ− = θ−l
θ+l = −θ−l
θ+r = θ−r

θ̇− = θ̇−l

10



(3) Collision of right side spoke only

All conditions are similar to the simultaneous collision except for Eqn. 29, 30, 31, and 32 are
replaced in the same order to be

θ− = θ−r

θ+l = θ−l
θ+r = −θ−r
θ̇− = θ̇−r

2.3 Motor torque and power model

The motor torque model relates the current to the torque and is given by

Ti = GKtIi

Td = GKtId (33)

The motor power model relates the torque and speed to the power and is given by

Pi = Tiθ̇i (34)

The net power is P = Pl + Pr.

3 Software

HIGH LEVEL - RASPBERRY PI

MID LEVEL - TEENSY

LOW LEVEL - ODRIVE

SEND/RECEIVE DATA

READ PITCH

JOYSTICK

RUN PID

SEND COMMANDS

CONTROL MOTORS

Figure 4: Software hierarchy

The software is categorized into three levels: high level, mid level, and low level (Figure 4). Each
corresponds to a different computing device in the robot. At the high level block, the Raspberry
Pi is the system’s scheduler and data logger. The Pi communicates bidirectionally with both the
Teensy microcontroller and the ODrive at 100 Hz (Figure 5). The communication with the micro-
controller is serial over USB. For the ODrive, the communication is through a library that directly
communicates through USB. The Teensy calculates the PID loop at 1 kHz and communicates with

11



the ODrive uni-directionally through physical serial. Lastly, the ODrive controls the motors at a
frequency of around 4 kHz.

RASPBERRY 
PI

TEENSY ODRIVE MOTORS

100 Hz

1000 Hz

4000 Hz
10

0 
Hz

Figure 5: Communication diagram

3.1 Raspberry Pi

STARTUP 
CHECKS

START MAIN 
LOOP

JS THREAD

I/O PROCESS

CHECK JS 
STATES

SPEED 
CHECK

UPDATE 
POS

UPDATE MOTOR 
STATES I/O TO TEENSY SEND CURR 

DATA

SAVE TO 
FILE

PRINT TO 
TERMINAL

Figure 6: Raspberry Pi software diagram

The Raspberry Pi software is written as a single script using Python 3, and uses both multi-
threading and multi-processes to run functions simultaneously (Figure 6). Once the program is
started, the Pi performs startup checks by connecting to the orientation sensor, the ODrive, and
the Teensy. The main program consists of three loops: a main loop, an I/O process, and a joystick
update thread. These are all run simultaneously to avoid the latency from writing acquired data
to the disk. The I/O process collects data from the main loop, saves it to the disk, and prints
desired information to the console. The data logged data includes: torso pitch, motor position,
motor speed, PID output, pitch setpoint, battery voltage, and battery current. These are all saved
for later analysis of walking trials for the robot. Data is collected at 100 Hz from the main loop,
by passing all of the values in a Python dictionary. This is necessary when using multi-processes,
as the processes do not share memory space. A multi-process approach was taken with the I/O
process because writing to disk is the slowest portion of the Pi code. The separate process can

12



be run on a different core, alleviating bottlenecking from too many slow instructions in a single
process.

The main loop starts a thread that monitors the Dualshock 3 joystick states. This is done using
the built-in Linux linux js application programming interface and a script that maps all of the
buttons and axes into usable dictionaries. Since the joystick monitoring is event based, e.g. the loop
waits until a button or axis value changes, the joystick function was placed in a thread, preventing
it from stopping the main loop. The benefit of a thread, however, is that it shared memory space
with the main loop, so no deliberate communication must happen between the thread and the main
loop. All joystick related commands are placed within this thread. Pitch setpoint changes, motor
calibrations, and motor on/off are all done in this thread.

The first action from the main loop is to check the motor speed as a safety precaution. The
script queries the motors for their velocity, and if either one is greater than our speed limit, the
Pi instructs the motor controller to turn off the motors immediately. Next, the torso pitch read
from the position sensor at 100 Hz. The ODrive is then queried for the information from the power
system: motor velocities and positions, bus (battery) voltage, and bus current. The current body
pitch is then sent to the Teensy at 100 Hz, and, if available, the PID out is received from the
Teensy. Lastly, the data is placed into a dictionary and that is sent to the I/O process to be saved
and viewed.

3.2 Teensy

INITIALIZESTART MAIN 
LOOP

CHECK STPNT 
ON

UPDATE 
PID

SEND PID TO 
ODRIVE

SEND TO PI 
(100 HZ)

GET & PARSE 
FROM PI

Figure 7: Teensy software diagram

The PID library for Arduino [1] was modified by enabling sub millisecond PID operation fre-
quency, adding an I-term limit, and adding a band limited derivative term. The microncontroller
is reset each time the main program on the Raspberry Pi is run. The reset pin is pulled to low
using the Pi’s I/O pins. Once the Teensy initializes, the main loop starts by checking the value
setpoint on (Figure 7). This value is sent from the Pi when the start button is pressed, and if
True, the PID controller starts. The PID is then updated with a built in function, completing the
calculation. If the PID update function is called faster than the time step for 1 kHz (1 millisecond),
the calculation is not performed. If the calculation has been performed, the PID output, in amps,
is sent to the ODrive over serial with the correct formatting required by the ODrive. The PID
output is then sent to the Pi over serial at 100 Hz. Lastly, the Teensy receives and parses the
setpoint, the boolean setpoint on, and the torso pitch. The information from the Pi must be
parsed, because the message, encoded in ASCII, begins with a < and ends with a >. This prevents
partial or corrupted messages from irregularities in communication.

References

[1] Brett Beuregard. Arduino pid library.

13



[2] Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza. Introduction to autonomous
mobile robots (intelligent robotics and autonomous agents series), 2011.

14


	Notation
	Robot constant parameters
	Simulation variables

	Robot model
	2D sagittal plane model
	Degrees of freedom
	Kinematics in stance phase
	Equations of motion in the stance phase
	Kinematics in support transfer
	Equations of motion for support transfer

	3D model: combining steering with sagittal model
	Differential drive kinematics
	Equations for stance phase in 3D
	Collision condition
	Equations for support transfer in 3D

	Motor torque and power model

	Software
	Raspberry Pi
	Teensy


