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Abstract: A rimless wheel or a wheel without a rim, is the simplest example of a legged robot
and is an ideal testbed to understand the mechanics of locomotion. This paper presents the design,
modeling, and control of a differential drive rimless wheel robot that achieves straight-line movement
and turning. The robot design comprises a central axis with two 10-spoked springy rimless wheels
on either side and a central body that houses the electronics, motors, transmission, computers, and
batteries. To move straight, both motors are commanded to constant pitch control of the central
body. To turn while maintaining constant pitch, a differential current is added and subtracted from
currents on either motor. In separate tests, the robot achieved the maximum speed of 4.3 m per sec
(9.66 miles per hour), the lowest total cost of transport (power per unit weight per unit velocity) of
0.13, and a smallest turning radius of 0.5 m. A kinematics-based model for steering and a dynamics-
based sagittal (fore-aft) plane model for forward movement is presented. Finally, parameters studies
that influence the speed, torque, power, and energetics of locomotion are performed. A rimless wheel
that can move straight and turn can potentially be used to navigate in constrained spaces such as
homes and offices.

Keywords: mobile robots; legged locomotion; robot control; rimless wheel; compliant locomotion;
torso-actuation; turning; differential drive

1. Introduction

One way of understanding the mechanics of locomotion is by recreating it. Legged
systems with one-, two-, and four-legs have been built, modeled, and controlled. In such
systems, stability is a key issue that needs to be accounted for during control synthesis and
to an extent, interferes in developing an understanding of the effect of morphology (e.g.,
the mass, the moment of inertia, the springiness of legs) on the gait. A rimless wheel robot
when constructed properly does not have any issues of stability (i.e., falling) and provides
an appropriate system for studying the effect of morphology on gait mechanics. The paper
presents the design of a relatively simple rimless wheel that can move and turn. We follow
this by detailed modeling, simulation, and parameter studies.

The rimless wheel, as the name suggests, is a wheel without the rim and was first
mentioned as a model of walking by Margaria [1]. When one launches the rimless wheel
with momentum on level ground, the legs of the wheel collide with the ground, losing
energy at every step, and eventually coming to a complete stop.

The simplest method of sustaining walking with the rimless wheel is to launch it down
a slope. Depending on the mass, inertia, leg length, and the number of spokes, there is a
certain slope that ensures steady walking speed. This notion of steady speed walking was
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first analyzed using tools in dynamical systems by McGeer [2] using Poincaré section and
limit cycle. The analysis comprises first finding an initial condition at a Poincaré section
(a chosen instant in the locomotion cycle such as foot-strike), that repeats at the Poincaré
section at the subsequent step, resulting in a limit cycle or periodic motion. Then, using a
linearization of the step-to-step dynamics, one can determine if small perturbations would
grow or diminish every step. It is relatively easy to find stable limit cycle for the 2D rimless
wheel [3]. However, in 3D, the rimless wheel is stable in the sagittal fore-aft plane but not
stable in the yaw (heading) direction [4]. One can achieve stable motion by adding a finite
width to the rimless wheel, i.e., two rimless wheels connected via a finite width bar [5].

An unpowered rimless wheel can sustain periodic walking on level ground if it
reduces impact losses to zero. Gomes and Ahlin [6] created an ingenious design that
involved connecting a torsional spring between the legs and the robot frame in such a way
that the spring winds-up from mid-stance to support exchange, extracting the energy from
the robot to ensure a nearly impact-less collision. Thereafter, the spring restores the energy
to the robot by unwinding itself from support exchange to the next mid-stance.

Powering the rimless wheel enables locomotion on flat terrain. Agrawal and Yin [7]
created a vehicle with a castor wheel in front and two rimless wheels at the rear. These two
rear rimless wheels have one motor to power both the wheels in tandem and another one
to expand/contract the leg length relative to each other. The rimless wheel moves straight
by rotating both wheels at the same speed but can turn by contracting or expanding the
spokes on one wheel relative to the other. Laney and Hong [8] created a robot with two
pairs of rimless wheels, each with six telescopic legs. There is a single motor on a diagonal
pair of legs that can expand/contract the pair. Thus, there are three motors per rimless
wheel. The robot moved straight and turned by retracting/protracting the telescopic legs
in a suitable pattern. Most recently, Cotton et al. [9] built a series of rimless wheel robots
with two pairs of wheels arranged side by side with fixed-length legs. The rimless wheel
moved straight using a single motor on its central axle and turned using another motor
that rocks a wobbling mass in the lateral plane. One robot they built called the Outrunner
was 0.6 m tall (2 feet) and achieved a top speed of 8.9 m/s (20 mph) and another called
HexRunner [10] was 1.83 m tall (6 feet) and achieved a top speed of 14.4 m/s (32.2 mph).

Our work builds upon an earlier rimless wheel robot [11], which had two sets of
rimless wheels with eight legs each. A single motor fixed to the axle connecting the two
rimless wheels propelled the robot forward. That robot could not turn. Here we have
modified the design to include two motors, one for each rimless wheel, to enable turning by
spinning them at different speeds. This work details the mechanical and electrical design,
the controller design, the modeling and simulation, and finally parameter studies. This
work is novel in a few ways. (1) Though there only a few rimless wheels that can turn,
ours is the first one to use a differential drive mechanism for turning. The mechanism
allows for relatively sharp turns and decouples the sagittal fore-aft plane motion to lateral
or turning motion. (2) The demonstration of versatile metrics, energy-efficient locomotion,
high-speed locomotion, and turning. The robot had a best-case energy-efficiency (Total
Cost of Transport (TCOT), which is total input power per unit weight per unit speed) of
0.13, which is close to that of the most energy efficient legged robot so far, Cargo [12] at 0.11.
The top speed achieved was 4.3 m/s (9.66 mph). The smallest turning radius achieved was
0.5 m. However, note that these metrics were achieved in separate trials. This work does
not cover feedback control against external perturbations, which we report elsewhere [13].
An earlier conference paper [14] described construction details and limited results, but this
paper has more extensive results including modeling and parameter studies.

The flow of the paper is as follows. The hardware section presents the mechanical and
electrical design is in Section 2, the controller is in Section 3, the modeling and simulation
is in Section 4, the results are in Section 5, and discussion in Section 6.
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2. Hardware

The rimless wheel robot called Rowdy Runner 2 (RR2) is an upgraded version of an
earlier robot Rowdy Runner (RR) [11]. The most significant additional features in RR2 are
its ability to turn, distributed computing, data collection, and remotely operated turning
control. All mechanical design files and code is provided online [15].

2.1. Mechanical Design

We show the Rowdy Runner 2 (RR2) in Figure 1. The robot comprises two major
mechanical components: two sets of rimless wheels (white-colored spokes) placed side-to-
side and the torso (green box) in between the wheels.

(a) (b)

Battery 
holder

Motors

Motor  Controller
and Raspberry Pi

Pulley-
Belt

drive

Inertial Measurement Unit (IMU)

Figure 1. Robot: (a) Rimless wheel side view and (b) with important components labeled.

2.1.1. Rimless Wheels

The robot has two sets of rimless wheels; we show one of which in Figure 2a. Each
set of wheels has 10 legs, each with a length of 0.26 m. Each leg has four components:
a 3D printed tube that attaches to the center hub, an off-the-shelf compression spring,
a 3D printed rod that slides into the aforementioned tube, and an off-the-shelf rubber foot.
The rod has a lip that contacts the spring and compresses it whenever weight is placed on
the leg. A slot designed into the rod allows for constrained movement by securing a screw
through the rod and the tube.

Motor pulley

   Belt 
tensioner

Mounted 
 Bearing
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Keyed Output 
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Mounted 
 Bearing

Schematic shown on the right side
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(a) Rimless wheel (b) Torso
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3D printed 
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Figure 2. Mechanical Design: (a) A single rimless wheel with compliant spokes, and (b) torso that
includes the transmission using belt drives, the motors, the sensors, and the batteries.

All legs connect to a central hub. The hub is one of the highly stressed parts and hence
constructed using aluminum. The hub has 10 small cylinders projecting on the outside
which are used to secure the 10 tubes of the legs through a screw. These screws prevent the
tubes from twisting or falling out. We connect each hub of the rimless wheel to the torso
(green box) through a shaft using a keyed shaft collar. We clamp the shaft collar onto the
shaft by tightening the key and to provide a secure connection.
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2.1.2. Torso

We show the robot torso (green box) in Figure 2b and is 3D printed to allow creating
complex geometries such as the bearing alignment holes, circuit board mounts, vent holes,
battery compartment, and the motor attachment point.

There are two shafts inside the box that connect to each of the two rimless wheels
through a keyed shaft collar. Within the box, each shaft has two mounted bearings; one
mounted to the sidewall of the body and one at the end of the shaft inside the body. Having
two perpendicularly supported bearings prevents the shaft from moving around from the
tension of the belt on the pulleys or during the robot motion.

We securely fasten the two motors to the wall in the body with the faceplate provided
by the manufacturer [16]. Each motor transfers power to the corresponding output shaft
through two pulleys and a toothed belt with a 5.4:1 reduction. We attach the encoder to
the motor with the help of a 3D printed bracket and second output shaft. This bracket
holds four nuts that thread the screws coming through the wall and the faceplate. We
attach the pulley to the output shaft of the motor with two set screws. We align the motor
and the output pulley with each other and rotate them by a GT3 toothed belt. The output
shaft is a half-inch keyed shaft that engages onto the output pulley. A shaft collar and
sidewall bearing surface hold the pulley in place laterally. We install a small tensioner on
the sidewall of the body to stretch the belt and prevent the belt from slipping.

We mount all circuit boards directly onto the torso’s designed standoffs. When
mounting directly into 3D printed plastic, the screws can self-tap themselves into the
plastic, eliminating the need for a nut. We mount the motor controller and computer to the
top of the body using screws into the designed standoffs. The top of the torso has eyelets
for a harness, and a cutout for the computer ports. The bottom of the torso holds two
batteries and the IMU, the latter of which we mount using four screws.

2.2. Electronics

Figure 3 illustrates the electronics used in the RR2 robot. At the highest level is the
Raspberry Pi 3B (4 core, 1.2 GHz, 1 GB RAM) that is responsible for system scheduling,
reading and storing all sensor data, and relaying data to an external computer. At the
middle level is a Teensy 3.2 micro-controller (Cortex-M4, 72 MHz, 64 KB RAM) [17] that
uses the body pitch measurement to compute the desired motor current for body torso
control. We connect it to the Raspberry Pi through a USB connection. At the lowest level
is an Odrive V3.5 [18], a motor controller for brushless direct current (BLDC) motors.
We connect the Odrive to the Raspberry Pi through USB and to the Teensy through a
serial connection.

Raspberry Pi

Joystick

Motor
Motor Current,
4 KHz

Teensy

Odrive

Encoder

Inertial
Measurement

Unit (IMU)

Motor Current,
1 KHz

Torso Pitch,
100 Hz

Event-based

Torso Pitch,
100 Hz

Motor angle 
& speed,
3.5 KHz

Current bias,

Motor angle
speed, current,
battery voltage,
100 Hz

Figure 3. Schematic of the electronics layout: The Raspberry Pi does all the high-level data manage-
ment including saving the data and receiving inputs from the Odrive motor controller, the inertial
measurement unit, and the joystick. The Teensy does the body pitch control using the body pitch data
from the Raspberry Pi. The Odrive regulates the motor current based on the input from the Teensy.
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The RR2 uses two commercially available BLDC motors with a 280 KV rating [16].
A 280 KV motor will produce 1 V across its terminals if the motor spins at 280 rpm. High
KV rating is preferred for high speed and low torque applications, but a low KV rating is
preferred for high torque and low-speed applications. We fit each motor with CUI AMT102
quadrature encoder. The Odrive counts the encoder tics and are used to control the BLDC
motor. We mount a 9-Degree of Freedom (DOF) orientation sensor BNO055 from Bosch
on the torso and is used to measure the torso pitch. We connect this orientation sensor to
the Raspberry Pi through a serial connection. The ODrive relays the motor angle, speed,
current, and battery voltage to the Raspberry Pi. We use a Dualshock 3 Controller as a
remote joystick to control the robot. This joystick has a Bluetooth transmitter, which we
pair with the Raspberry Pi. Due to the Raspberry Pi’s mediocre internal WiFi antenna range
and performance, we attach a small wireless hotspot to the robot torso for communication
and data transfer. We connect this hotspot to the Raspberry Pi through an Ethernet cable,
which we power using an USB battery bank (5000 mAh).

We use a 6S 30C 3000 mAh Lithium Polymer (LiPo) battery with a nominal battery
voltage of 22.2 V to power the motors. The 30C rating designates that this battery can
output a constant current of 90 Amps (A). The 6S rating means that this battery has 6 battery
cells in series, totaling the 22.2 V nominal voltage. We use a double cell 3.7V 4000 mAh
LiPo battery to power the Raspberry Pi. We connect the battery to a circuit board soldered
to the Raspberry Pi that boosts the battery voltage to 5 V and prevents the under-voltage of
the battery.

The various electronics communicate at different rates. At the highest level, the Rasp-
berry Pi communicates with the inertial measurement unit, Teensy, and Odrive at 100 Hz.
At the middle level, the Teensy communicates with the Odrive at 1 kHz. The Odrive
communicates with the encoder at 3.5 kHz and with the motor at 4 kHz. The joystick is an
exception that communicates with the Raspberry Pi in an event-driven fashion, i.e., the
Raspberry Pi accepts the commands from the joystick only at certain times (e.g., it accepts
turning command once-per-step at mid-step).

3. Controller
3.1. Torso Pitch Controller

The goal of the torso pitch controller is to maintain the torso to a set angle rk = φref to
the vertically downward direction. By holding the torso at a set angle during the entirety of
motion, it torques the shaft of the rimless wheel. This produces a traction force at the spoke
contact that pushes the system forward, thus adding energy into the system. However,
the robot loses energy when the legs collide with the ground and friction in the springs
and bearings. During the steady-state motion of the rimless wheel, the energy added by
the torso equals the energy loss, leading to steady-state speed between steps.

A proportional integral derivative (PID) controller is used to achieve torso pitch
control. Figure 4 shows the control diagram of the PID controller. The PID controller at
time step k is

uk = Kpek + Ki ∑ ek + Kd ˙̄ek (1)

where uk is the current; Kp, Ki, and Kd are the proportional, integral, and derivative gains,
respectively, and are all constant during all runs; ek = rk − yk is the position error and
given by the reference pitch angle rk and the measured pitch angle yk respectively. We set
the reference pitch angle to rk = 50◦ unless noted otherwise. To prevent integral windup,
we limit the integral term (Ki ∑ ek) to 25% of the maximum current allowed. The error
rate term ėk = ek − ek−1 is noisy, we use an exponential filter to find the filtered error rate
ēk = αek + (1− α)ēk−1. We initialize the filtered error rate to ē1 = e1 and we tune the
constant parameter α experimentally. We use α = 0.1.
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Figure 4. Schematic of the feedback controller: The feedback controller controls the torso pitch using
a Proportional-Integral-Derivative (PID) controller at 1000 Hz.

To tune the PID gains, we place the robot on a table with the legs firmly clamped.
We use the heuristics proposed by Wescott [19] as follows: All gains start at zero and we
set Kp at an arbitrary number between 0 and 1. The starting value for Kd is 100× Kp,
and we increase Kd until we see excessive oscillation or overshoots from the torso. We
then reduce the almost unstable Kd by a factor of 2 to ensure a well-behaved gain. Next,
we tune Kp by starting with a value between 1 and 100. We tune the Kp gain to where
the body oscillates and then fine tune by increasing/decreasing by a factor of 2. Finally,
we tune Ki by setting the gain to a value between 0.0001 and 0.01. We then fine tune the
value using the techniques for the previous gains. Using this method, our tuned gains were
Kp = 0.17 A/rad, Ki = 0.0005 A/rad-s, and Kd = 16 As/rad. An alternate method is to
use Ziegler–Nichols method [20].

3.2. Straight-Line Motion

To move straight, both the rimless wheels need to move at the same speed. We achieve
this by setting the current in both the motors to the same value. Additionally, the torso
angle needs to main a constant pitch angle. We met all these objectives when the motor
currents on the left Il and right Ir are set to be equal to each other and to the constant pitch
control given by Equation (1).

Il = Ir = uk (2)

3.3. Turning Motion

To turn, we add a differential current ∆I to the existing current on one motor and
subtracted from the existing current on the other motor.

Il = uk + ∆I, Ir = uk − ∆I, Turn right; (3)

Ir = uk + ∆I, Il = uk − ∆I, Turn left. (4)

Since the motor current is proportional to output torque, torque is proportional to
the pitch angle, and pitch angle is proportional to the speed we conclude that the motor
current is proportional to the robot speed. Thus, the rimless wheel with more motor current
will speedup relative to the other side, thus achieving turning. The rationale behind
adding/subtracting the same current from the left and right rimless wheel is because
the average current in the two motors determines the torso pitch angle, which is still uk,
and thus the torso pitch tries to achieve stabilization at rk. We set the current differential
∆I manually using the joystick.

4. Modeling and Simulation

In this section, we present an overview of the computer model for the rimless wheel.
More thorough details are in the supplementary document in Appendix A: Multimedia
extension. The computer model has two parts: (a) a steering model based on kinematics
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adapted from differential drive mobile systems [21], and (b) a sagittal (fore-aft) plane model
based on the dynamics [11].

4.1. Steering Model

Figure 5 shows the top-down view of the robot as it is turning. The world frame is
X0 −Y0 and the local frame fixed to the robot and moving with it is X1 −Y1. In Figure 5a,
the local frame coincides with the world frame and in Figure 5b, the robot is at a generic
position with the heading angle β as shown.

In deriving the steering model, we assume that the relative speed of one rimless wheel
relative to the other leads the robot to turn and there are no dynamic effects due to location
of the center of mass, which is slightly forward but in between the two rimless wheels.
We obtain the kinematics equation for the steering by finding an expression for the linear
speed of point C in the local frame, ẋ1

c = 0.5`(θ̇r + θ̇l), and ẏ1
c = 0 and then by relating

with the world frame using the heading angle β to find the velocity of point C to obtain

ẋ0
c = 0.5`(θ̇r + θ̇l) cos(β) (5)

ẏ0
c = 0.5`(θ̇r + θ̇l) sin(β) (6)

β̇ = 0.5
`

b
(θ̇r − θ̇l) (7)

where θ̇l and θ̇r are the angular speeds of the left and right wheels respectively, ` is the
length of the virtual leg (defined later in Section 4.2), and b is half the width of the robot
as shown. We get the last equation for the heading rate by reasoning about the change in
heading as the speed of either sides of the wheel is changed.

X0

Y0

b

(xc yc ),


X 1
Y1

b

(xc yc ),


β

(a) position at start (b) position at some point of time

left wheel

right wheel

θr

θl

Figure 5. Steering model adapted from differential drive systems: A top view of the robot. (a) The
world or fixed frame X0 −Y0 is shown to coincide with robot local frame. (b) The local frame X1 −Y1

is attached to the robot and moves with it. The steer or heading angles is β and the point C is midway
between two wheels have the coordinates x1

c , y1
c in the local frame and x0

c , y0
c in the world or fixed

frame. For the steering model, a differential equation for the position of C, ẋ0
c , ẏ0

c and heading β̇

is found.

4.2. Sagittal or Fore-Aft Plane Model
4.2.1. Equations of Motion for the Stance Phase

We replace the two wheels with a single rimless wheel assumed to be at a point mid-
way between the two wheels. This assumption allows the derivation of the sagittal (fore-aft)
plane model of the robot and then combine it with the steering model (see Section 4.1) to
derive the 3D model for the robot. The center of mass location is in the forward direction
and between the two rimless wheels, which is an important consideration in deriving the
sagittal model as discussed next.

Figure 6a shows the robot parameter and the simulation parameters for the 2D model.
This figure is used to derive the equation of motion for the stance phase, which we define
as the phase when the two legs on either side of the rimless wheel are touching the ground.
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Figure 6. Planar model: The robot is progressing from left to right. (a) The robot parameters used in
the simulation, (b) the robot at an instant before support transfer, and (c) the robot at an instant after
support transfer. All state variables before and after support transfers are appended a superscript −

and + respectively. The point P is the current spoke touching the ground and point Q is the spoke
that will touch the ground on the next step. Note that the robot has 10 legs on each side but only
8 spokes are shown in the illustration.

The goal is to find the differential equation for θ̈l , θ̈r, ῭, and φ̈. We replaced the first
two angles with two new angles defined as follows θ = 0.5(θl + θr) and θd = 0.5(θl − θr).
Thus, we first find the differential equations for θ̈d, θ̈, ῭, and φ̈ followed by differential
equations for θ̈l and θ̈r.

The motor torque at the rimless wheel shaft Ti where i = l, r produces a traction force
at the contacting spoke Fi =

Ti
`0

. For straight motion, the net traction force pushing the robot
forward is Fl + Fr. For turning, the net moment about the central axis is Td = (Fl − Fr)b.
We obtain the equation for θ̈d from the differential torque Td and inertia of the robot along
the vertical axis Jd as

θ̈d =
Td
Jd

=
(Tl − Tr)

Jd

b
`0

(8)

where Tl and Tr are the motor torques on the left and right wheel, respectively.
We get the equations for θ̈, ῭, and φ̈ by using the principle of angular momentum

balance point P and G1 as shown in Figure 6a and principle of linear momentum along the
axial direction of the leg on the ground. These three equations are

→̇
H/P =

→
M/P,

→̇
H/G1 =

→
M/G1 ,

∑(m
→
a G) · êr1 = ∑

→
F ext ·êr1 , (9)

where
→̇
H/P,

→
M/P, and

→
F ext are the rate of change of angular momentum about point P,

external moment about point P, and external forces respectively, m,
→
a G, and êr1 are the

mass, acceleration of the center of mass G, and unit vector along the stance leg, respectively.
From above equations

AssẌss = bss, (10)

where Xss = {θ, φ, `}, Ass is a 3 × 3 matrix, and bss is a 3 × 1 vector. Please see the
supplementary file for more details in Appendix A: Multimedia extension.

4.2.2. Support Transfer Conditions

To check whether a new spoke has contacted the ground, we need to check the two
conditions hl = 0 and hr = 0 which denote the vertical distance between spoke touching
the ground (point P in Figure 6b) and the next spoke (point Q in Figure 6b).
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The collision condition for the left side wheel and right side wheel are

hl = `− cos(θ−l )− `0 cos
(

θ−l +
2π

n

)
= 0, (11)

hr = `− cos(θ−r )− `0 cos
(

θ−r +
2π

n

)
= 0. (12)

There are three distinct conditions: (1) legs on either side simultaneously collide with
the ground, thus hl = 0 and hr = 0 are both true simultaneously, (2) leg on the left side
collides the ground, thus hl = 0 is true, and (3) leg on the right side collides the ground,
thus hr = 0 is true.

4.2.3. Equations of Motion for the Support Transfer Phase

During support transfer, there is a hard collision, and the wheel loses energy. We
derive th equations for the positions and corresponding rates next. We know the values of
the variables before support transfers θ−l , θ−r , φ−, `−, θ̇−l , θ̇−r , ˙̀−, φ̇− and we are interested
in finding the variables after support transfer, namely θ+l , θ+r , φ+, `+, θ̇+l , θ̇+r , ˙̀+, φ̇+.

The assumption made here is that the net difference of velocity before collision is the
same as that after collision. This assumption ensures that the two wheels have reasonable
speeds after collision. Also note that before and after collision (i.e., during the stance phase),
we model the two rimless wheels as a single rimless wheel. Thus

∆θ̇+ = θ̇+l − θ̇+r = θ̇−l − θ̇−r (13)

Corresponding to the three collision condition described above, there are three cases:
(1) support transfer is through left and right side spokes simultaneously, (2) support transfer
is through the left side spoke only, (3) support transfer is through the right side spoke only.
We discuss these conditions next.

(1) Support transfer is through left and right side spokes simultaneously

We define the angle θ− as follows

θ− = 0.5(θ−l + θ−r ) (14)

We obtain the equation relating the three degrees of freedom after support transfer to
that before support transfer by comparing the configuration of the robot before and after
support transfer as shown in Figure 6b,c. These are

`+ = `0, θ+ = θ− +
2π

n
, φ+ = φ−, (15)

where we base the first equation on the fact, the upcoming contacting spoke is unstretched.
The angles θ+l and θ+r are

θ+l = −θ−l , θ+r = −θ−r (16)

To find all rates, we define the rate θ̇− as follows

θ̇− = 0.5(θ̇−l + θ̇+r ) (17)

Next, to find ˙̀+, θ̇+, and φ̇+ we use the following three equations: the conserva-
tion of angular momentum about upcoming collision points Q, conservation of angular
momentum about the center G1, and the conservation of linear momentum along the
axial direction

→
H

+

P =
→
H
−
Q ,

→
H

+

G1
=
→
H
−
G1

,
→
L
+
·ê+r1

=
→
L
−
·ê−r1

. (18)
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In the Equation (18) we assume that there is no impulsive force along the stance leg.
The rationale is that impulse provided by the spring along the radial direction is negligible
during the relatively short duration of impact. Combining Equation (18) to get

AhsẊ+
hs = bhs, (19)

where Xhs = {θ, φ, `}, Ahs is a 3 × 3 matrix, and bhs is a 3 × 1 vector. Please see the
supplementary file for more details in Appendix A: Multimedia extension.

Finally, to find the rate θ̇+l and θ̇+r using θ̇+ from Equation (19) and from ∆θ̇+ in
Equation (13)

θ̇+l = θ̇+ + ∆θ̇+, θ̇+r = θ̇+ − ∆θ̇+ (20)

In summary, we obtain the positions θ+l , θ+r , φ+, `+ from Equations (15) and (16),
respectively, and rates θ̇+l , θ̇+r , ˙̀+, θ̇+, φ̇+ from Equations (18) and (20), respectively.

Finally, note that we can find the steering coordinates after support transfer ẋ+0
c , ẏ+0

c , β̇+

using the positions and rates after support transfer using Equations (5)–(7).

(2) Support transfer is through left side spoke only

All conditions are similar to the simultaneous collision except for Equations (14), (16),
and (17)

θ− = θ−l , θ+l = −θ−l , θ+r = θ−r , θ̇− = θ̇−l . (21)

(3) Support transfer is through right side spoke only

All conditions are similar to the simultaneous collision except for Equations (14), (16),
and (17)

θ− = θ−r , θ+l = θ−l , θ+r = −θ−r , θ̇− = θ̇−r . (22)

4.3. Motor Torque and Power Model

The motor torque model relates the torque Ti to the gear ratio G, motor torque constant
Kt and current

Ti = GKt Ii, (23)

where i = l, r for the left and right motor, respectively. The motor power model relates the
torque and speed to the power and is given by

Pi = Ti θ̇i. (24)

The net torque for the simulation is T = Tl + Tr and net power is P = Pl + Pr.

4.4. Computer Simulation

We simulate the system using custom-written script in MATLAB. We need to specify
11 initial conditions: θ0

r , θ0
l , `0, φ0,θ̇0

r , θ̇0
l , ˙̀0, φ̇0, x0

c , y0
c , and β0. We integrate the equa-

tions of motion given by Equations (8) and (10) using numerical integrator ode113. We
use the ‘events’ function in ode113 to detect collision of the spoke with the ground using
Equations (11) and (12). Thereafter, depending on the collision type, we use the relevant
equations from Section 4.2.2 to relate the positions and rates before collision to that af-
ter collision.

5. Results

This section presents the experimental and simulation results. To initialize the robot,
we held the robot in a stationary position on two spokes, one on each side. We turn ON the
torso pitch controller and allowed to stabilize. Once stabilized, we gently push the robot
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to impart slight momentum that helps it move forward. For a steady torso pitch angle,
the robot achieves a set steady-state speed when initialized in this fashion. To turn the
robot, we use a wireless joystick that sets a differential current to each motor as described
in Section 5.2.

Our metrics for the robot performance are the overall robot speed, the mean torque on
the motors, the power drawn by the motors, the Actuator Cost Of Transport (ACOT) and
the Total Cost Of Transport (TCOT). We define the latter two quantities

ACOT =
Total Actuator Power

Weight×Velocity
(25)

TCOT =
Total Power

Weight×Velocity
(26)

The difference in ACOT and TCOT is in the power term used in the numerator.
The ACOT uses the power of the two motors while TCOT uses the power of the motors
and power of the electronics and computers. Thus, TCOT has a greater value than ACOT.
A low Cost of Transport (Total or Actuator) demonstrates a more energy-efficient motion.

5.1. Straight-Line Motion

Figure 7 compares the trajectory data between simulation and experiments for a test
run on concrete with a torso pitch setpoint of 50◦. The data is for 5 seconds after the robot
reaches a steady-state speed. The thick red lines are the simulation data, the black dashed
lines and blue bands are the mean values and one standard deviation respectively for
the experimental data. Although the setpoint tracking is achieved with high accuracy as
shown by (a), the speed is within −3.5±−0.5 rad/s and the torque is within 5± 1 Nm.
The power which is the product of the torque and speed is 5± 1 W. The experimental data
is considerably noisy hence the relatively large standard deviation, but the average values
between simulation and experiments agree reasonably well as indicted by Table 1. There
are two reasons for the spiky data: (1) the collisions during support transfer, and (2) the
cogging torque in the motor. The cogging torque is more pronounced when doing a current
control as done here. Cogging torque is when there is zero output torque that occurs when
the rotor lines onto the dead-band (no magnetic field) of the stator.

We tested the rimless wheel on different surfaces to study the effect of floor compliance
on the TCOT and speed. Table 2 shows the results of testing on 5 different surfaces. All
these results were for a torso setpoint of 50◦ and after achieving steady-state motion.
As seen from the table, polished concrete has the lowest speed and highest TCOT while
asphalt has the highest speed and lowest TCOT.

Table 1. Comparison of experiment (mean values) on concrete with simulation for torso pitch
set-point of 50◦.

Quantity Experiment Simulation

Power

Pi & Sensors 5 W

Teensy 0.2 W

Motors 5.18 W 5.17

Total Power 10.38 W 10.37 W

Mean Torque 1.41 Nm 1.5 Nm

Mass 6.9 kg

Mean Velocity 0.936 m/s 0.897 m/s

ACOT (see Equation (25)) 0.08 0.085

TCOT (see Equation (26)) 0.164 0.171
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Table 2. Cost of Transport and velocities on different surfaces.

Surface TCOT Avg. Velocity (m/s)

Polished Concrete 0.16 0.936

Polished Wood 0.15 1.197

Indoor Running Track 0.14 1.268

Outdoor Running Track 0.13 1.280

Asphalt 0.13 1.379
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Figure 7. Experimental data for straight line motion for 1 complete revolution or 10 steps of the
rimless wheel: (a) Torso pitch, (b) absolute speed of the robot, (c) motor torque, and (d) power, all as
a function of time. The mean is shown with black dashed line and the blue bands show one standard
deviation. The simulation data is shown by red solid line. The measurements had considerable noise
leading to a relatively large standard deviation.

We also tested the rimless wheel for different torso pitch angle. Theoretically, a torso
pitch angle of 90◦ should give the fastest speed. However, because the torso pitch set-point
control is not perfect, the torso would overshoot beyond 90◦ driving the system unstable.
To offset the issue, we limit the torso pitch to a maximum of 85◦ to the vertically downward
direction. The maximum speed achieved with this torso pitch angle is 4.32 m/s (9.66 mph)
on polished wood (i.e., an indoor basketball court).

5.2. Turning Motion

To induce turning, we command the robot torso pitch to 50◦ and launched to move in
a straight line. After the robot reaches a steady-state speed, it turns when commanding
different currents in the motors using a hobby remote control. Figure 8a show the path
taken by the robot. The robot can turn within the indoor facility without bumping into
obstacles. We show the smallest turn radius during our trials in Figure 8b. We obtain
the figure by super-posing five video frames and using a calibration scale to measure the
radius. The smallest turn radius achieved is 0.5 m. The turn radius is measured using the
inner side of the rimless wheel when it turns. Theoretically the smallest turn radius is zero
corresponding to the one wheel stationary and other moving a non-zero speed. The issue is
that the torque requirement for this is too low for the robot to hold a constant pitch angle of
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50◦ leading to a loss of forward momentum, consequently coming to a halt. From multiple
runs, we found that the robot turns more easily on hard floors at slow speeds most likely
because of the better traction between the legs and the floor at slow speeds.

r = 0.5 m

(b)

Figure 8. Experimental results for robot turning (a) Trajectory of the robot during turning; (b) Shortest
turning radius of 0.5 m.

Figure 9 shows the simulation data for turning with a radius of 0.5 m. Here, the relative
difference between the left and right motor current is 1.5 A. Figure 9a shows the spatial
position of the center of the torso as viewed from top. The rimless wheel starts at 0, 0 and
turns clockwise. As shown in subsequent figures, the robot takes about 1.6 s to complete
half-turn. The Figure 9b,c shows the torso pitch angle and torso speed. It can be seen
that the torso pitch stays around 50◦ while there is mild fluctuation in the speed. Note
that we used a simple position servo without considering the model compensation (e.g.,
gravity compensation). Figure 9d,e shows the position and speed of the spoke in contact
with the ground. It can be seen that the left wheel is traveling faster than the right one.
Finally, Figure 9f,g shows the motor torques and motor powers respectively. It can be
seen that the differential torque is about 1 Nm and the total motor powers is about 4.5 W
consistent with straight line movement. These results demonstrates that (1) our control
algorithm of introducing a small differential current in the two motors is sufficient to get
the rimless wheel to turn without losing momentum and (2) validates the kinematics-based
steering model.
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Figure 9. Simulation data for turning: (a) Trajectory for circular turn, (b) torso angle, (c) torso velocity,
(d) absolute angle of the wheel, (e) absolute angular speed of the wheel, (f) torque on the torso,
and (g) total motor power.

5.3. Parameter Studies

To do parameter studies, we vary one parameter at a time keeping the other parameters
the same as the one for straight-line motion. For each simulation, we start the rimless wheel
in the upright position θl = θr = 0 and angular speed θ̇l = θ̇r = −0.1 rad/s and simulation
time is 5 s. The time is sufficiently long for the rimless wheel to achieve steady-state speed.
The parameters we vary are the torso pitch angle, location of the center of mass of the torso,
the number of spokes, the mass of the wheel, and the stiffness of the springs in the leg.

Figure 10 shows plots of the output parameters: average speed, average torque on
the torso, average motor power, and average motor cost of transport for all the above
parameters except the leg stiffness. We have not shown the leg stiffness data because we
found that there are no significant changes in the output parameters when we vary spring
stiffness from 500 to 4000 N/m. The black dot in the plot shows the value for the current
robot design and the straight-line movement experiment reported earlier. From these plots,
we can draw the following conclusions: (1) to increase the speed, the torso pitch angle,
the distance of the center of mass from the center of the wheel, and the number of spokes
should all increase but the mass of the wheel should decrease; (2) to decrease the torque on
the torso, the pitch angle, the torso center of mass, and the mass of the wheel should all
decrease but the number of spokes should increase; (3) to decrease power consumption the
torso pitch angle, the center of mass location should decrease but the mass of the wheel
should increase, but there is a range of spokes between 10 and 12 where the power achieves
a maximum; and (4) to decrease the cost of transport, the location of the center of mass
from the center of the wheel should decrease but the number of spokes and mass of the
wheel should increase, but there is a negligible change as the torso pitch angle changes.
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Figure 10. Parameter studies: Effect on speed, torque, power, and COT for motor as a function
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The current design of the rimless wheel is shown by a dot.

One can use these plots or computer simulations as a starting point to achieve specific
performance metrics for the rimless wheel robot.

6. Discussion

This paper presented the design, modeling, and control of a differential drive rimless
wheel robot that achieved a maximum speed of 4.3 m/s (9.66 mph) and a minimum turn
radius of 0.5 m. The 6.9 kg robot achieved a Total Cost of Transport (power per unit weight
per unit speed) between 0.13 to 0.16 for different surfaces with speed ranging from 0.94
to 1.38 in m/s (2.1 to 3.1 in mph). The model of the rimless wheel robot comprises a
kinematics-based model for steering motion and dynamics-based for sagittal or fore-aft
plane for forward movement. The model can explain the energetics, speed, and turning
characteristics of the robot. Finally, parameters studies show key parameters that affect the
speed and energetics.

The Total Cost Of Transport (TCOT) defined as the power used per unit weight per unit
velocity is the most widely accepted measure of energy usage of locomotion [22]. Humans
have a TCOT of 0.3 while walking at a self-selected speed [23]. However, among ‘true’
bipedal robots, the most energy-efficient robots are Cornell biped with TCOT of 0.2 [24]
and Cornell Ranger with a TCOT of 0.19 [25,26]. The most energy-efficient legged robot is
by ETH Zurich, Cargo at a TCOT of 0.1 [12] while RR 2 at TCOT of 0.13. However, Cargo
has large feet and RR2 has multiple spokes. These features afford these robots enhanced
stability with no additional controller considerations. The parameter studies the following
measures to further decrease the TCOT: (1) moving the center of mass closer to the center of
the wheel, thus reducing the motor torque; (2) increasing the number of spokes which leads
to lowering the collisional losses; and (3) increasing the total mass presumably because
the power increase in the numerator of TCOT is proportionately less than the decrease of
TCOT because of the increased mass in the denominator.

The RR2 with 20 total legs reached a maximum speed of 4.3 m/s (9.66 mph). The robot
has legs with a length of 0.26 m, which gives it a Froude number of 2.71 (Froude number is
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v/
√

g` where v is speed, g is gravity 9.8 m/s2, and ` is leg length). Outrunner, the 0.6 m
tall, 6 legged rimless wheel had a Froude number of 5.14 and HexRunner, the 1.83 m tall,
6 legged rimless wheel had a Froude number of 4.82. Thus, RR2 is twice as slow as these
other rimless wheels. To increase the speed of the rimless wheel we need to reduce the
collisional losses. We can do this either by decreasing its mass or increasing the number
of spokes. Alternately one can add more energy to the system during the single stance
phase by increasing the pitch angle or increasing the distance of the center of mass from
the center of the wheel.

A differential drive-based turning is simple (only two motors needed) and enables a
short turn radius. The minimum turning radius achieved by RR2 is 0.5 m (see Figure 8).
The low net torque prevents us from achieving the shortest turn radius of 0 m (turning
in place) as discussed in Section 5.2. The Outrunner and HexRunner use an oscillating
pendulum-like mechanism in the lateral (side-ways) plane for turning, but the minimum
turn radius has not been made publicly available. The main difference between RR2 and
these runners is that RR2 relies on kinematics to turn (speed of one wheel relative to the
other) while the runners rely on the dynamics of the oscillating mass, the location of its
center of mass, and oscillating frequency. We need to control the oscillation to ensure that
the turning motion does not destabilize the robot in the sideways direction. Although the
differential drive rimless wheel and the differential drive wheel have the same turning
kinematics, the rimless wheel has hybrid dynamics in the sagittal plane with energy losses
during collision, while the wheel has purely kinematic movement without energy losses
assuming that it rolls without slipping.

Direct drive motors are attractive because they provide low backlash, low friction, low
reflected inertia, mechanical robustness/efficiency, high-actuation bandwidth, and high
efficiency [27]. The direct-drive brushless motor used in the robot has a KV rating of 280.
This means that for a 1 V voltage output across the motor terminals, the input motor speed
is 280 rpm. A high KV ensures high speed but a low KV ensures a high torque. This KV
rating did not provide enough torque to support the weight of the torso. Thus we add a
pulley transmission to increase the gearing by a factor of 5.4, thus increasing the torque
without reducing the advantages of the direct drive motors appreciably.

A significant issue with the hobby-grade motors such as the ones used here is the
torque ripple or the periodic fluctuation of the output torque for constant input current
and load. This is because of the low number of magnetic cores in hobby-grade motors that
lead to a lower magnetic strength as the rotor moves from one core to the next. The torque
ripple causes controllability issues leading to a poor torque and/or position control (see
Figure 7c). The torque ripple made it difficult to achieve rapid modification in the speed
and turning.

The rimless wheel had some failure modes. A successful launch was sensitive to the
push. Too hard or too slow a push or asymmetrical push leads the rimless wheel to not
launch properly causing a failed trial. A fixture for standardizing the launch can solve this
issue. On numerous occasions, the rimless wheel ran into walls and broke one or more
legs. However, because the legs were modular and 3D printed, it is relatively easy to fix
the broken legs.

Rimless wheels are traditionally been argued to be useful in uneven terrain (e.g., sand,
rock). However, if rimless wheel can easily move straight and turn, it can be useful in
navigating in tight spaces (e.g., warehouses, buildings) such as the case here. In the rimless
wheel presented here, we control the speed by maintaining a constant pitch on the torso.
Thus, the torso is always at a fixed angle with respect to the world frame. In such settings,
one can mount a stereo camera on the torso to enable vision-based movement control.

There are several limitations of the robot that could be addressed in future iterations.
The robot cannot self-start and needs to be manually launched. If the robot goes too
slow, it comes to a complete stop. This is because there is an energy barrier to cross
from the standing position with four spokes (two on each side) touching the ground to
the vertical upright position with two spokes touching the ground (one on each side).
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One way of crossing the energy barrier is by pitching the torso appropriately to pump
energy into the wheel. It is challenging to control the pumping with noisy sensors without
leading to instability. One option to self-start is to additional means of actuation such as an
actuated tail or actuated spokes. The torque ripple prevents high fidelity motion control
such as stabilizing against disturbance and quick turning. This issue may be addressed
by upgrading to motors with a higher number of magnetic cores [28] or by position or
force-based feedback compensation [29]. The robot cannot work on rough terrain such as
sandy and muddy terrain and is probably because of its relatively low speed for its size.
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Appendix A

1. A video of the hardware prototype available at this YouTube link: https://youtu.be/
SNxeP29ayhI (accessed on 15 July 2021).

2. Supplementary materials including simulations, animation, mechanical design, and
robot code are on github: https://github.com/pab47/RoadRunner2 (accessed on 15
July 2021).

3. The MATLAB and Blender code with test examples are on github: https://github.
com/EzAme/DR2 (accessed on 15 July 2021).
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