
Cooperative route planning of multiple fuel-constrained Unmanned
Aerial Vehicles with recharging on an Unmanned Ground Vehicle

Subramanian Ramasamy1†, Jean-Paul F. Reddinger2, James M. Dotterweich2,
Marshal A. Childers2, Pranav A. Bhounsule 1†

Abstract— Multiple small, low cost, multi-rotor Unmanned
Aerial Vehicles (UAVs) are ideal for aerial surveillance over
large areas. However, their limited battery capacity restricts
them to areas in proximity of stationary recharging depots.
One solution is to use an Unmanned Ground Vehicle (UGV)
to provide a moving recharging depot. The problem is then to
find the time- or energy-optimal paths for the multiple fuel-
constrained UAVs to visit a set of mission points while being
recharged by stopping at the UGV, whose path also needs to be
determined. This is a combinatorial optimization problem that
is computationally challenging, but may be solved relatively fast
using heuristics. In this paper, we present two-level optimization
that involves, (1) finding a UGV path by fixing waypoints
using K-means and then formulating and solving a traveling
salesman problem (TSP), and (2) finding paths for the multiple
UAVs using a vehicle routing problem (VRP) formulation with
capacity constraints, time windows, and dropped visits. We used
constraint programming to solve these problems in less than a
minute on a standard desktop computer for up to 25 mission
points and 4 UAVs. Our main observation is that increasing
the number of UAVs decreases the mission time and refueling
stops, but does not decrease the total distance covered or total
time taken.

Keywords: Traveling Salesman Problem, Vehicle Routing
Problem, K-means clustering, Fuel Constraints, Constraint
Programming, Local Search Heuristics.

1. INTRODUCTION

Recent advances in the design and control of multi-
rotor aerial vehicles such as quadcopters or drones have
made them practical for applications such as surveillance,
reconnaissance, environment and traffic monitoring, search
and rescue, and border patrol [5]. The relatively low cost,
simple hardware, high speed, and ease of control enable
several Unmanned Aerial Vehicles (UAVs) to be deployed
for large-scale coverage [1]. However, their limited battery
capacity severely restricts their capability to relatively small
areas [15].

One way of enabling large-scale coverage with limited
battery capacity is to have multiple fixed recharging depots.
For example, in case of monitoring the aftermath of a disaster
scene, the UAVs may visit the ground base stations for
recharging to extend the monitoring time [10]. However,

1 Subramanian Ramasamy and Pranav A. Bhounsule are with the
Department of Mechanical and Industrial Engineering, University
of Illinois Chicago, IL, 60607 USA sramas21@uic.edu
pranav@uic.edu 2 Jean-Paul F. Reddinger, James M.
Dotterweich, Marshal A. Childers are with DEVCOM Army
Research Laboratory, Aberdeen Proving Grounds, Aberdeen, MD
21005 USA. jean-paul.f.reddinger.civ@mail.mil
james.m.dotterweich.civ@mail.mil
marshal.a.childers.civ@mail.mil. † This work was
supported by ARO grant W911NF-14-S-003

UGV path

Start

X Mission points
 UGV waypoints UAV 1 path

UAV 2 pathRefuel points

UGV travel direction

End

Fig. 1. An example scenario. The objective is to route the UAVs to visit
the missions (crosses). Since the UAVs are fuel constrained they cannot visit
all missions on a single charge. By planning a suitable route for the UGV
(blue dashed lines) with possible recharging locations (small black circles),
the 2 UAVs can plan to take a stop each (large orange circles) and visit all
missions without running out of fuel.

there are several situations such as in non-urban environ-
ments and/or hostile environments where it may not be
possible to fix the recharging depots [3]. In such situations,
a viable alternative is to have an Unmanned Ground Vehicle
(UGV) providing recharging support by coordinating with
the UAVs. Figure 1 shows an example scenario where two
fuel-limited UAVs can visit a set of mission points recharging
at strategic positions on the UGV path. Here, we are given
only the mission points and the start position of the UAVs-
UGV, while we need to determiend the route of the UGV,
route of the two UAVs and the recharging stops while
minimizing an objective (e.g., minimize the distance travelled
by the UAVs). This is a combinatorial optimization problem
that is known to be non-deterministic polynomial time or NP-
hard. Hence we need to design suitable heuristics to solve
the problem in finite time. This paper presents a two-level
optimization framework based on formulating a traveling
salesman problem and vehicle routing problem and then
solving them using constraint programming.

2. BACKGROUND AND RELATED WORK
We limit the literature review to vehicle routing problems

with fuel constraints.
Khuller et al. [7] were the earliest ones to solve vehicle

routing problem with fuel constraints. They considered the

1

problem of finding the cheapest route for a fuel constrained
vehicle with a set of fueling stations, each with a different
fuel price. They used a dynamic programming (DP) formu-
lation to solve the problem. Kannon et al. [6] considered the
problem of finding the route of a fuel-constrained aircraft to
visit a set of waypoints with set of aerial refueling waypoints.
They compared a mixed-integer linear programming (MILP)
formulation with a DP formulation and found that DP
outperforms MILP.

Levy et al. [8] and Sundar et al. [13] considered exten-
sions to multiple fuel-constrained Unmanned Aerial Vehi-
cles (UAVs). The goal here was to minimize the distance
travelled by multiple fuel-constrained UAVs to visit a set
of waypoints once and recharge on ground-based recharging
depots. Levy et al. used a variable neighborhood search based
on randomization and variable neighborhood descent based
on the gradient to search for an optimal solution. Sundar
et al. formulated several mixed-integer linear programming
(MILP) formulations and solved these using an off-the-shelf
MILP solvers.

Maini et al. [9] considered the problem of routing a
single fuel-constrained UAV to a set of missions while being
recharged by stopping at a UGV traveling on a road net-
work. They solved the problem using a two-stage approach.
First, using the UAV range constraints, they found a set of
recharging depots. Second, they formulated a mixed-integer
linear program and solved for the path of both the UAV and
UGV. We consider an extension of the problem considered
by Maini et al. These extensions are: we consider multiple
fuel constrained UAVs, we use an off-road UGV, both of
which add complexity to the problem as we need to plan the
path of the UGV, the recharging points for the UAVs, and
the paths for the UAVs.

We present a two-level optimization to solve for the UAV-
UGV path. In the first level, we solve for the UGV path by
fixing waypoints using K-means and then formulating and
solving a traveling salesman problem (TSP). In the second
level, we solve for the paths of multiple UAVs by using
a vehicle routing problem (VRP) formulation with capacity
constraints, time windows, and dropped visits. We solve
the optimizations at both levels using constraint program-
ming using Google’s OR-ToolsTM. The novelty compared
to previous work is in the deployment of the UGV in off-
road environments, extension to multiple UAVs, and solution
using constraint programming. Though we used an off-the-
shelf solver (Google’s OR tools), our approach has the
following novelties.
• The framework allows planning of the UGV path in off-

road environments using TSP and subsequently the UAV
path planning using VRP considers UGV speed through
time windows, fuel limits using capacity constraints,
and to choose recharge location using dropped visits.

• The use of constraint programming with heuristics
leads to a search-based instead of an optimization-based
solution approach that enables solution times under a
minute for up to 25 missions and 4 UAVs and 1 UGV.

Outer Loop optimization
UGV route planning

(K-means & Traveling Salesman)

Inner Loop optimization
UAV route planning

(Vehicle Routing with capacity constraints,
time windows, and dropped visits)

Fig. 2. Two-level optimization for solving UAV-UGV routing problem

3. METHODS
A. Problem statement

The overall objective is to plan the path of K fuel-limited
Unmanned Air Vehicle (UAVs) to pre-specified mission
points while minimizing the total distance travelled. The
UAVs are recharged by docking on a single Unmanned
Ground Vehicle (UGV). The path of the UGV and its
stopover locations are not pre-specified, but needs to be
computed. The velocity of the UAV is fixed, while the
velocity of the UGV can be 0 to a maximum value. It
is assumed that the UGV has no fuel constraints and can
provide unlimited recharges to the UAVs. When the UAV
docks on the UGV, it is assumed that the UGV does not
move. Thus, the UAV take-off point is the same as the
landing point. The total travelled between recharges is fixed
at 15 minutes and there is a fixed time, called service time
s = 10 min. that the UAV spends at the UGV during
recharging and also at the mission point.

B. Solution approach

We solve the problem in a hierarchical fashion using a two-
level optimization as shown in Fig. 2. At the first-level, we
optimize the UGV route. First, we use k-means clustering
to find clusters and their centroids. Using these centroids
as waypoints, we formulate and solve a traveling salesman
problem to get the route for the UGV. We specify the
centroids and additional heuristically added points between
the centroids as potential stops for the UAV to recharge.
At the second-level, we optimize the UAV routes using the
mission points and UGV stop locations from the first-level of
the optimization. We formulate a vehicle routing problem by
adding fuel capacity constraints for the UAVs, time windows
for the UGV stops, and allowing the UAVs to drop visits at
the fuel stops. We now give more details.

C. K-means clustering

We use K-means clustering to find suitable waypoints for
the UGV [18]. K-means clustering is a technique to group
n observations into k clusters. Each of these k clusters have
a central location, which is the centroid of the cluster. Our
goal is to find the k clusters and the centroid. This problem
is NP hard so we resort to the heuristic algorithm shown as
Algorithm 1 and described next.

2

Algorithm 1 K-MEANS ALGORITHM
Input: k, [x1, x2, ..., xn];

1: Randomly place k centroid points c1, c2, ..., ck
2: while not StoppingCondition() do
3: for each observation xi do
4: evaluate nearest centroid point cj by evaluating

Euclidean distance min D (xi, cj);
5: Assign observation xi to the nearest centroid j;
6: end for
7: for each do cluster j = 1, 2, ..., k
8: recompute cj = 1

nj

∑
xi→cj

xi;

9: end for
10: end while

The inputs to the algorithm are the ‘n’ mission locations
x1, x2, ...xn and the number of clusters, k. Initially, we
assign the centroid points at random. These centroid points
are assigned by picking some ‘k’ points randomly from
location of the existing mission points in the space. Next, we
carry a sequential optimization; first, to assign membership
for an observation to a cluster, and second, to recompute the
centroid of the cluster. To assign membership, we find the
distance between an observation and centroid of each cluster
and then assign the observation to the cluster with minimum
distance. To recompute the centroid of the cluster, we use the
observations from the cluster. These two steps are repeated
till a StoppingCondition() that no observation changes cluster
membership.

D. UGV route using traveling salesman problem formulation

Since there is a single UGV with no fuel constraints, we
solve for the UGV route using Traveling Salesman Problem
formulation.

Consider a directed graph G′ = (V ′, E′) where V ′ is
the entire set of vertices V ′ = {0, 1, 2,, k}, which are
the cluster centroids with 0 and k as the ’start’ and ’end’
vertices, and E′ is the set of edges that gives the arc costs
between i and j and E′ = {(i, j)|i, j ∈ V ′, i 6= j}. The c′ij
gives the non-negative arc cost between a particular i and
j. The x′ij is a binary variable where the value of x′ij will
be 1 if a vehicle travels from i to j, and 0 otherwise. We
formulate the TSP problem follows,

min
∑
i∈V ′

∑
j∈V ′

c′ijx
′
ij (3.1)

s.t.,
∑
i∈V ′

x′ij = 1, ∀j ∈ V ′ \ {0, k} (3.2)∑
j∈V ′

x′ij = 1, ∀i ∈ V ′ \ {0, k} (3.3)∑
j∈V ′

x′0j =
∑
i∈V ′

x′ik = 1, {0, k} ∈ V ′ (3.4)∑
i∈Q

∑
j∈Q

x′ij ≤ |Q| − 1, ∀Q ({1, ..., k}, |Q| ≥ 2 (3.5)

x′ij ∈ {0, 1}, ∀i, j ∈ V ′ (3.6)

The objective (Eqn. 3.1) is to minimize the total distance
of the traveled by the UGV. The constraints (Eq. 3.2) and
(Eq. 3.3) denote that each vertex is visited once, that is,
balancing the incoming and outgoing number of vehicles
at a particular vertex. Constraint (Eq. 3.4) ensures that the
vehicle must start from ’start’ vertex and ends at the ’end’
vertex. Although constraint 3.4 is satisfied by constraints
3.2 and 3.3, we present them separately for the sake of
completeness. Constraint (Eq. 3.5) ensures that there are no
sub-tours. Constraint (Eq. 3.6) represents the binary type
decision variable used.

We solve the above problem using Constraint Program-
ming [11], [12], more specifically, using Google’s OR-
ToolsTM[4].

E. UAV route using vehicle routing formulation

Table I describes the sets used to describe the UAV vehicle
routing problem. Consider a directed graph G = (V,E)
where V is the entire set of vertices V = {0, 1, 2,,m,m+
1,, n} and E is the set of edges that gives the arc costs
between i and j and E = {(i, j)|i, j ∈ V, i 6= j}. Let cij be
the non-negative arc cost between a particular i and j. Let
xij be the binary variable where the value of xij will be 1 if
a vehicle travels from i to j, and 0 otherwise. We formulate
the VRP problem with capacity constraints, time windows,
and dropped visits as follows,

min
∑
k∈K

∑
i∈V

∑
j∈V

cijkxijk +
∑

d∈D\{0,m}

αpd, D ⊂ V

(3.7)

s.t.,
∑
k∈K

∑
i∈V

xijk = 1, ∀j ∈ V \ {0,m} (3.8)∑
k∈K

∑
j∈V

xijk = 1, ∀i ∈ V \ {0,m} (3.9)∑
j∈V

x0j =
∑
i∈V

xim = K, {0,m} ∈ D (3.10)

C(rk) ≤ Ck, ∀k ∈ K (3.11)

tkj = tki + ski + tkij ,

where ∀i ∈ V, j ∈ V \ {0}, k ∈ K (3.12)

tstart ≤ tkj ≤ tend,
where ∀j ∈ V \ {0}, k ∈ K (3.13)

fkj = fki − ckij , ∀k ∈ K, i, j ∈M
(3.14)

fkj = Nk, ∀k ∈ K, j ∈ D \ {0,m}
(3.15)

xkij ∈ {0, 1}, ∀i, j ∈ V,∀k ∈ K (3.16)

pd ∈ {0, 1}, (3.17)
pd +ActiveV ar(d) = 1−, ∀d ∈ D \ {0,m} (3.18)

ski ≥ 0 (3.19)
α ≥ 0 (3.20)
Ck > 0, Ck ∈ R+ (3.21)

T k > 0, T k ∈ R+ (3.22)

3

The objective, Eqn. 3.7, is to minimize the sum of the total
travel distance of all the UAVs and the penalty costs for
dropping the visits. The concept of dropping the visits will
be explained in detail below.

The constraints in Eq. 3.8 and Eq. 3.9 denote that an UAV
visit each vertex only once, with exception of the starting
depot 0 and ending depot m. Thus, the first two constraints
are made in such a way that the two UAVs do not coincide
simultaneously in the same charging station (UGV stops)
as well. Constraint in Eqn. 3.10 denotes that the number
of UAVs leaving the depot 0 is equal to the number of
UAVs reaching the depot m. Constraint in Eq. 3.11 denotes
that the total cost of a particular UAV’s route rk (C(rk))
is always less than or equal to the corresponding UAV’s
maximum allowable distance Ck that it can travel. Constraint
in Eq. 3.12 denotes that the cumulative arrival time at j, tkj ,
is equal to the sum of cumulative time at the mission i, the
service time at the mission i, ski , and the travel time from
i to j, tkij . Constraint in Eqn. 3.13 ensures that the UAV’s
cumulative time at a particular vertex (either missions from
M or depots from D) is always within the range of the time
window, [tstart, tend]. This [tstart, tend] represents the time
window at which UGV arrives and stays at a particular UGV
stop. This time window values are obtained from the ratio
of the distance between any two UGV stops and the velocity
with which UGV travels. Constraints Eq. 3.14 and Eq. 3.15
represents the fuel constraints. Constraint 3.14 denotes that
when any UAV ’k’ is visiting a set of missions, the fuel of
the UAV decreases proportional to the distance traveled from
node i to node j. Once the UAV comes to the recharge at
a UGV stop, i.e., a node which belongs to set D \ {0,m},
it recharges to Nk, where Nk is the full fuel capacity for
a UAV k. This is represented by the constraint Eq. 3.15.
It then completes rest of the missions till it reaches the
end depot m, m ∈ D. In short, fk is equal to Nk during
the start of the problem. Constraints given by Eq. 3.16 to
Eq. 3.22 represents constraints on the free variables. Here
pd, Eq. 3.17, is a binary decision variable corresponding to
the Indices set, which is mainly operated by the constraint
3.18. This binary variable pd is responsible for dropping
UGV stops. In constraint 3.18, ActiveVar(d) means that if
the node ’d’ is visited by a vehicle, then ActiveVar(d) is
equal to 1, else ActiveVar(d) is 0. Intutively, set D \ {0,m}
in 3.18 can be interpreted as the nodes in the D set which
are to be optionally dropped. Each optional node in D can
only be visited a maximum of a single time according to
the constraint 3.18. That is, if a node d is visited, then
pd must be 0 to satisfy 3.18, thereby penalty is 0 as the
node is visited. If a node d is not visited, then pd must be
equal to 1 to satisfy 3.18 which leads to adding penalty α
in the objective function. The penalty α, Eq. 3.20, is a user
chosen real number which decreases the dropped visits as
we increase its value and vice versa. This α value can be
tuned in such a way that if a smaller number is chosen,
then the solver tries to drop as many nodes as possible
and if a large number of penalty is chosen, the solver tries
to avoid dropping as many nodes as possible because the

Sets Description Set elements

V Set of Vertices V = {0, 1, 2, ...,m,m + 1, ..., n}

E Set of Edges E = {(i, j)|i, j ∈ V, i 6= j}

D Set of UGV stops D = {0, 1, 2, ...,m}

M Set of missions M = {m + 1, ..., n}

K Number of UAVs K = {1, 2, ..., k}

F Full fuel i.e., Fuel capacity of UAV F = {f1, f2, ..., fk}

TABLE I
SETS USED IN THE UAV ROUTING PROBLEM

solver has to pay such a huge penalty if a node is to be
dropped. he Ck in Eq. 3.21 is the user chosen positive real
number which defines the allowable maximum distance that
a particular UAV can travel. The total distance of the UAV in
operation must be lesser than or equal to Ck. Similarly, the
T k in Eq. 3.22 is the user chosen positive real number which
defines the allowable maximum duration that a particular
UAV can fly. The total duration of the UAV in operation
must be lesser than or equal to T k.

The concept of dropping UGV stops is vital in our problem
as dropping as many refueling nodes as possible will save
the total distance traveled by the UAVs thereby avoiding
unnecessary refueling stops made by the UAVs on the UGV.

We solve the above problem using Constraint Program-
ming [11], [12] using Google’s OR-Tools [4]. In this for-
mulation, sets D and M are proper subsets of V . Set D
represents the number of UGV stops including starting depot
and ending depot, and set M represents the number of
missions that UAVs need to visit once.

F. Solution using Constraint Programming (CP)

We solved the UGV routing (TSP) (see Section 3-D)
and UAV routing (VRP) (see Section 3-E) problems using
Constraint Programming (CP). Constraint programming or
constraint optimization is a tool for solving hard combina-
torial optimization problems by searching for solutions that
satisfy a list of constraints.

In particular, we used Google’s OR-Tools solver. OR-Tools
uses a search tree, local search, and meta-heuristics to find
feasible and subsequently, the most optimal solutions. At the
heart of OR-tools is a CP-SAT solver [4]. The solver uses
DecisionBuilder that has as its input, the decision variables,
rules to choose the next variable to assign a value, rules
for choosing the value to assign to the variable. Using the
DecisionBuilder, we use the Path Cheapest Arc strategy
to find an initial feasible solution (see algorithm in [14]).
Starting with the “start” node, the decision builder connects
the node that has the shortest distance from the previous
node and iterating till the end. While doing the connections,
it checks the feasibility of the solution.

Then OR-Tools uses a local search to find the best solution
in the neighborhood of the current solution. These local
search proceeds by a move operator that rewires the nodes

4

B

A

B

A

A
B

A

B

B
A

C B
A

C

A

B

A

B

A

B

A

B

a) 2-opt

b) Or-opt

c) Relocate

d) Exchange

e) Cross

Fig. 3. Move operators [2]

and checks for feasibility and cost. These moves are repeated
till a termination criteria such as no improvement of the
objective. There are 5 move operators. These are listed next
and shown in Fig. 3 and is taken from [2].

1) 2-opt interchanges the sub-part of a tour by removing
two arcs, and then connects them interchangeably so
that the objective value gets reduced.

2) Or-opt moves the sub-part of a tour if there are a
maximum of 3 contiguous visits to that sub-part of the
tour.

3) Relocate connects a visit of one tour to another tour
if the reduction in objective value is seen.

4) Exchange involves swapping two visits between each
other from either the same tour or two different tours.

5) Cross involves exchange of a visit at the end of one
to another tour. The difference between Exchange and
Cross is that the Exchange move can be done in any
part of tour/tours, but Cross can be done only to the
end portions of two tours.

In order to escape a local optimum solution, OR-Tools
use meta-heuristics. We use the Guided Local Search (GLS)
in our problem [16]. In GLS, we add a penalty term to the
objective function O leading to an augmented objective O′

1.5

3.0

4.5

6.0

7.5

1.5 3.0 4.5 6.0 7.5

X - Mission points
Distance (in km)

Distance (in km)

Start

Fig. 4. Graphical representation of the 25 mission points on a coverage
area of 8× 8 sq. km. Both, the UGV and UAV are assumed to start at the
center of the coverage area shown as ‘start’. The circle represents the UAV
round trip coverage on a single battery capacity.

function. The penalty term is dependent on the neighborhood
of the solution x through a set of features F . The augmented
objective function is [2]

O′(x) = O(x) + λ
∑
i∈F

fi(x)pici (3.23)

where the indicator function for the corresponding feature i
that belongs to F is fi. We define fi(x) = 1, if the feature
i is in solution or 0 otherwise. Also, λ is the penalty factor
that can tune the search for the solutions. For example, a
larger λ increases the diversity of the solutions (also see
[17]), pi is the number of times the particular feature i has
been penalized, and ci is the cost for the feature fi. Using the
augmented objective O′ increases the cost of the objective
with respect to the neighborhood, thus enabling the solver to
get unstuck from a local optimum solution. Subsequently, a
local search is used to continue the search.

4. RESULTS

We generated 25 mission points randomly in an area of
8× 8 kms as shown in Fig. 4. We solve using single UGV,
but vary the number of UAVs, 1, 2, 3, 4 to compare the
solutions as we add UAVs. The UAV and UGV both start at
the center of the area. Since the UAV travels at a constant
speed of 10 m/s, the distance is proportional to time and is
interchangeable after suitable conversion. The fuel capacity
in terms of time is 15 minutes, which is equivalent to a
distance coverage of 9 km. We fix the service time at mission
and at the UGV to be 10 minutes. We assume that there is
no fuel consumption when the UAV is at the UGV and that
the UGV does not move when the UAV has landed on it.
The minimum and maximum speed of the UGV is used to
set the time windows in the UAV route optimization.

First of all, note that if the UGV is stationary at the middle,
then there are no solutions as there are some missions that
are far enough that the UAV does not have enough charge

5

TABLE II
RESULTS FOR MULTIPLE UAVS FOR 2 CLUSTERS

#
UAV

UAV 1 UAV 2 UAV 3 UAV 4 Total
Dis-
tance
(kms.)

Total
Time
(min.)

Mission
time
(min.)

Distance
(kms)

#refuel #mission Distance
(kms)

#refuel #mission Distance
(kms)

#refuel #mission Distance
(kms)

#refuel #mission

1 40.34 4 25 40.34 357.23 357.23

2 38.99 4 19 8.69 0 6 47.68 369.47 294.98

3 24.76 3 13 17.76 1 7 8.28 0 5 50.8 374.67 201.27

4 14.99 1 5 15.13 1 7 8.85 0 6 16.06 1 7 55.03 371.72 107.77

TABLE III
RESULTS FOR MULTIPLE UAVS FOR 3 CLUSTERS

#
UAV

UAV 1 UAV 2 UAV 3 UAV 4 Total
Dis-
tance
(kms.)

Total
Time
(min.)

Mission
time
(min.)

Distance
(kms)

#refuel #mission Distance
(kms)

#refuel #mission Distance
(kms)

#refuel #mission Distance
(kms)

#refuel #mission

1 42.73 6 25 42.73 381.22 381.22

2 35.74 4 16 17.6 1 9 53.34 388.9 259.58

3 17.65 1 8 27.44 3 12 8.88 0 5 53.97 379.95 195.73

4 8.01 0 3 20.81 2 9 7.56 1 6 21.2 1 7 57.58 385.97 144.68

TABLE IV
RESULTS FOR MULTIPLE UAVS FOR 4 CLUSTERS

#
UAV

UAV 1 UAV 2 UAV 3 UAV 4 Total
Dis-
tance
(kms.)

Total
Time
(min.)

Mission
time
(min.)

Distance
(kms)

#refuel #mission Distance
(kms)

#refuel #mission Distance
(kms)

#refuel #mission Distance
(kms)

#refuel #mission

1 49.13 6 25 49.13 391.88 391.88

2 8.89 0 6 40.75 5 19 49.64 382.73 307.92

3 9.03 0 3 18.07 1 6 35.23 4 16 62.33 403.88 258.72

4 9.03 0 3 8.27 0 2 6.26 0 4 35.23 4 16 58.79 387.98 258.72

take a round trip. Figure 4 yellow region shows the range
of the UAV . Thus, it is necessary for the UGV to move in
order to have feasible solutions.

We used constraint programming solver in Google’s OR-
ToolsTM[4]. We coded the optimization problem in Python
3.9.0 and performed the computations on an 2.2 GHz Quad-
Core Intel Core i7 processor with 16 GB RAM 1600 MHz
DDR3 memory. All optimizations took less than 60 seconds
to complete.

Figure 5 shows the clusters for cluster size k = 4 using the
K-means algorithm. The large circles show the centroid of
the cluster, while we show the mission points with smaller
circles. We show mission points that belong to the same
cluster using the same color.

Figure 6 shows the results of solving for the UGV route.
We solve the problem using the centroid locations found
using k-means as the waypoints and with the Euclidean
distance as the objective in the traveling salesman problem.
The solution gives the UGV route, including the direction of

motion of the UGV. The ‘end’ location is the final node and
depends on the number of clusters chosen. Finally, we add 3
more waypoints between two UGV waypoints as possible
stopping locations for the UAV for recharging. Although
we show 3 waypoints here, we found that adding additional
waypoints did not change the optimum appreciably.

Figure 7 shows the UAV routes for a different number
of UAVs, K = 1, 2, 3, 4. The ‘start’ and ‘end’ denotes the
start and end position of both the UGV and all UAVs. We
show the UGV route for using a blue dashed line with the
direction as shown. We depict the UAV route by a solid
line of a different color. The arrows on the dashed and solid
line indicate the direction of motion of the UGV and UAV,
respectively. We show the recharging spots with an orange
dot. For example, in Figure 7 (a) the UAV has 6 orange dots
indicating that the UAV stops at the UGV 6 times. We can see
that there is no instance when over one UAV is recharging at
a particular UGV stop as there multiple UAVs do not cross
at the orange dot. Also, when the number of UAVs is greater

6

1

2

3

4

Distance (in km)

Distance (in km)

1.5

3.0

4.5

6.0

7.5

1.5 3.0 4.5 6.0 7.5

Fig. 5. Results for cluster size of 4. Large circle indicates the centroid
of the cluster and small circles represent the mission points. Missions that
belong to a cluster are in the same color.

Distance (in km)

Distance (in km)

Start

Direction of UGV travel

X - Mission points
 - UGV stops

End

3

1

2

4

1.5

3.0

4.5

6.0

7.5

1.5 3.0 4.5 6.0 7.5

Fig. 6. UGV route obtained by solving the traveling salesman problem
with distance as the objective using the 4 centroids as waypoints. The
centroids are numbered. Additional stops are shown with small filled circles
as potential locations for the UGV to stop.

than 1, we can see that one UAV travels substantially more
distance compared to the others. We elaborate on this in the
discussion section.

Figure 8 shows the the solution for different cluster sizes
k = 2 and k = 3 for 2 UAVs. Also, note that Fig. 7 (b)
shows the solution for k = 4 for 2 UAVs. The use of different
cluster sizes leads to substantially different UGV routes. For
2 clusters (Fig 8 (a)), the UGV starts towards the right corner
and then takes a turn to move towards the left corner. For 3
clusters (Fig 8 (b)), the UGV starts toward the bottom left
corner before turning top left and then going horizontally. For
cluster size of 4 shown in Fig. 7 (b) respectively, the UGV
starts toward the top left before going vertically down then
horizontally to the right and eventually going vertically up

to the end. These UGV routes lead to widely different UAV
solutions with different missions point served at different
times.

Tables II, III, and IV are for cluster sizes of 2, 3, and 4
respectively. They provide a comparison of the distance trav-
elled, number of recharging stops, mission travelled for each
UAV and total distance and total travel time. For each cluster,
we solved for 1, 2, 3, and 4 UAVs. Our overall objective was
to minimize the total distance travelled (third to last column).
It can be seen that for a specific cluster size the distances
are the least for 1 or 2 UAVs. Within the clusters, the least
distance is 40.34 for cluster size 2 and 1 UAV (Table II). The
total time is given by the travel time from one mission to
another (= distance in km/UAV speed in km/min) and the
service time. The service time s is given by

s = 10× # refuel + 10× # mission

where 10 is the number of minutes taken by the UAV at the
recharging stop and mission. There is no clear trend in the
minimum time across these clusters. For cluster size of 2, 3,
and 4, the minimum time is for 1, 3 and 2 UAVs respectively.
The total stops are obtained by summing the individual stops
in each row. For example, for Table III there are 6, 5, 4, 4
for 1, 2, 3, and 4 UAVs respectively. Thus, as the number of
UAVs increases the recharging stops decrease. The same is
true for other clusters. In the individual table it can be seen
that there is one UAV that travels the most distance compared
to the others. For example, in Table IV, for 4 UAVs, the UAV
4 travels 35.23 km, refuels 4 times and serves 16 missions
while the others serve 6.26, 8.27, and 9.03 km, do not refuel,
and serve 4, 2, and 3 missions respectively. This happens
because our objective of reducing the total distance covered
does not specifically try to balance out the distances travelled
by UAVs. Moreover, as seen in Fig. 7 (d), UAV 4 serves
bottom left set of missions while the other serve the mission
on the top right side indicating that the specific spread of the
missions contributes to the imbalanced distance coverage.

The mission time which is the time from start to end is
given in the last column of Tables II, III, and IV. It can be
seen that as the number of UAVs is increased the mission
time decreases. For example, for 2 clusters, the mission time
is 357.23 min for 1 UAV, but it reduces to 107.77 min for
4 UAVs, a factor of 3 reduction. One can also see that the
number of refueling decreases from 4 for 1 UAV to only 1
for 4 UAVs. The reduction in mission time and refueling is
an advantage of using more UAVs.

5. DISCUSSION

In this paper, we have presented a methodology to solve
for routing of a multiple fuel-limited Unmanned Aerial
Vehicles (UAVs) and an Unmanned Ground Vehicle (UGV)
such that the UAVs visit a set of missions and recharge as
needed by landing on the UGV. We solved the problem using
a two-level optimization; first, we solve for the UGV route;
and second, we use the UGV route to solve for the UAV
route. To compute a route for the UGV, we used K-means
clustering to decide a set of waypoint and then formulated

7

1.5

3.0

4.5

6.0

7.5

1.5 3.0 4.5 6.0 7.5

Distance (in km)

Distance (in km)

Start

End

Direction of UGV travel

X - Mission points
 - UGV stops

Vehicle 1

(a)

Distance (in km)

Distance (in km)

Start

End

Direction of UGV travel

X - Mission points
 - UGV stops

Vehicle 1
Vehicle 2

(b)

1.5

3.0

4.5

6.0

7.5

1.5 3.0 4.5 6.0 7.5

Distance (in km)

Distance (in km)

Start

End

Direction of UGV travel

X - Mission points
 - UGV stops

Vehicle 1

Vehicle 2

Vehicle 3

(c)

1.5

3.0

4.5

6.0

7.5

1.5 3.0 4.5 6.0 7.5

(d)

1.5

3.0

4.5

6.0

7.5

1.5 3.0 4.5 6.0 7.5

Distance (in km)

Distance (in km)

Start

End

Direction of UGV travel

X - Mission points
 - UGV stops

Vehicle 1

Vehicle 2

Vehicle 3
Vehicle 4

Fig. 7. Routes obtained for different number, k, of UAVs, (a) k = 1, (b) k = 2, (c) k = 3, and (d) k = 4

Distance (in km)

Distance (in km)

1.5

3.0

4.5

6.0

7.5

1.5 3.0 4.5 6.0 7.5

X - Mission points
 - UGV stops

Vehicle 1
Vehicle 2

Direction of UGV travel

Start

End

(a) X - Mission points
 - UGV stops

1.5

3.0

4.5

6.0

7.5

1.5 3.0 4.5 6.0 7.5

Distance (in km)

Distance (in km)

Start

End
Direction of UGV travel

Vehicle 1

Vehicle 2

(b)

Fig. 8. Routes obtained for 2 UAVs with different cluster size for UGV route selection (a) 2 clusters, (b) 3 clusters. Also, compare with 4 clusters in
Fig. 7 (b).

8

and solved a Traveling Salesman Problem. To compute the
route of the UAVs, we formulated and solved a Vehicle
Routing Problem with capacity constraints (fuel limits), time
windows (to match UGV meeting points for recharging), and
dropped visits (allow UAV to stop at some, bit not all the
UGV waypoints).

The cluster points define points to which the UGV must
travel to extend the range of the fuel-limited UAV. The
minimum number of clusters to get a feasible solution is 1.
This corresponds to moving a short distance toward 0, 0 as
shown in Fig. 4 such that all mission points are eventually
covered by the UAV. As the number of clusters increases,
it enables the UGV to have a larger coverage area which in
turn can reduce the total travel distance of the UAV. However,
larger coverage does not imply better solutions for the UAV
hence we need to find the optimum number of clusters. In
this scenario, we found that for 4 clusters we get the optimum
UAV solution.

Since we first solved the UGV route followed by the UAV
route, the quality of the UAV solution is highly depended
on the UGV route solution. In particular, the choice of the
number of clusters, which determine the number of way-
points for the UGV route selection, results in substantially
different UGV route (compare the dashed lines in Fig. 8
(a) with Fig. 7 (b), and Fig. 8 (b)) and subsequently the
UAV solution. For a specific cluster size, we found that
using 1 or 2 UAVs results in the least total distance travelled
compared to using 3 or 4 UAVs. On close examination of the
solutions, we found distances travelled by the UAVs are not
similar. Usually, one UAV travels substantially more distance
compared to the others. There are probably two reasons for
this: one, the geographic distribution of the missions favors
this solution, and two, we did not enforce that all UAVs finish
their missions in the same time, thus allowing some UAVs
to travel shorter distance.

Although we obtained minimum travel distance using a
single UAV, there are benefits of using multiple UAVs. With
more UAVs, the time from start to end or mission time,
decreases. Also, as we add more UAVs, the number of
recharging stops decreased.

Our methodology has limitations, which we list next. In
the two-level optimization, the results from the first level
significantly affect the results of the second level. Thus, it
is important to vary the different free parameters in the first
level to understand their influence on the second level of
optimization. The k-means clustering assigns clusters based
on distance between mission points, but not the number
of missions. There could be a scenario where the distance
and the number of missions within a cluster needs to be
factored in to arrive at a feasible solution (e.g., highly packed
clusters). In our formulation, we use the average speed of
the UGV of 1.1 mph to fix the time windows for UAV route
optimization. However, our resulting solution does not lead to
a uniform speed of the UGV from one recharging depot to the
next. That is, the UGV might have to travel faster or slower
than average speed between some recharging depots. This
is potentially problematic if the UGV cannot travel faster

because of terrain conditions. Our UGV-UAV solution is
computed offline and executed in an open-loop fashion. Thus,
if the missions and/or UGV paths change due to dynamically
changing scenarios, we do not make modifications to the
plan. However, given the short computation times of < 1
min, it is conceivable that we can recompute the solutions
either on a ground station or on the cloud and relay the
updated route to the UGV and UAV.

6. CONCLUSION AND FUTURE WORK

We conclude that the problem of routing multiple fuel-
constrained Unmanned Aerial Vehicle (UAV) with recharging
on a single Unmanned Ground Vehicle (UGV) can be formu-
lated as a two-level optimization and solved effectively using
constraint programming. In the first level of optimization, the
UGV route is generated by using k-means to generate way-
points and then formulated and solved as a traveling salesman
problem. In the second level of optimization, the UAV route
is generated by using a vehicle routing formulation with
capacity constraints, timed-windows, and dropped visits. We
are able to generate high-quality solution for 25 mission
points, 1 UGV and up to 4 UAVs in less than a minute on
a standard desktop computer. Our main observation is that
increasing the number of UAVs decreases the mission time
and refueling stops, but does not decrease the total distance
covered or total time taken.

There are a multiple directions to extend this work
1) Increasing the number of UGVs. This might need a

different heuristic for generating the waypoint for the
UGV and using a vehicle routing formulation to solve
for UGV route.

2) Increasing the number UAVs to several orders and
subsequently the number of UGVs. This might entail
creating new heuristics and creating new search algo-
rithms within the constraint programming formulation.

3) Allowing period re-computation of the routing problem
for UGV and UAV as the mission progresses based on
information updates.

4) Allowing multiple or periodic visits of the UAV to
some mission points.

5) Adding varies uncertainties such as the travel time and
service time to the formulation.

REFERENCES

[1] Yaniv Altshuler, Alex Pentland, and Alfred M Bruckstein. Optimal dy-
namic coverage infrastructure for large-scale fleets of reconnaissance
UAVs. In Swarms and Network Intelligence in Search, pages 207–238.
Springer, 2018.

[2] Bruno De Backer, Vincent Furnon, Paul Shaw, Philip Kilby, and
Patrick Prosser. Solving vehicle routing problems using constraint
programming and metaheuristics. Journal of Heuristics, 6(4):501–523,
2000.

[3] Michael Freed, Will Fitzgerald, and Robert Harris. Intelligent au-
tonomous surveillance of many targets with few UAVs. In Proceedings
of the Research and Development Partnering Conference, Department
of Homeland Security, Boston, MA, 2005.

[4] Google. Google OR-tools. https://developers.google.
com/optimization, 2021. Online; accessed Feb 2, 2021.

[5] Stephen R Griffiths. Remote terrain navigation for unmanned air
vehicles. 2006.

9

https://developers.google.com/optimization
https://developers.google.com/optimization

[6] Tanya E Kannon, Sarah G Nurre, Brian J Lunday, and Raymond R
Hill. The aircraft routing problem with refueling. Optimization Letters,
9(8):1609–1624, 2015.

[7] Samir Khuller, Azarakhsh Malekian, and Julián Mestre. To fill or not
to fill: The gas station problem. ACM Transactions on Algorithms
(TALG), 7(3):1–16, 2011.

[8] David Levy, Kaarthik Sundar, and Sivakumar Rathinam. Heuristics
for routing heterogeneous unmanned vehicles with fuel constraints.
Mathematical Problems in Engineering, 2014, 2014.

[9] Parikshit Maini, Kaarthik Sundar, Sivakumar Rathinam, and PB Sujit.
Cooperative planning for fuel-constrained aerial vehicles and ground-
based refueling vehicles for large-scale coverage. arXiv preprint
arXiv:1805.04417, 2018.

[10] Vera Mersheeva. UAV routing problem for area monitoring in a
disaster situation. PhD thesis, PhD thesis, 2015.

[11] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of
constraint programming. Elsevier, 2006.

[12] Paul Shaw, Vincent Furnon, and Bruno De Backer. A constraint
programming toolkit for local search. In Optimization software class
libraries, pages 219–261. Springer, 2003.

[13] Kaarthik Sundar, Saravanan Venkatachalam, and Sivakumar Rathinam.
Formulations and algorithms for the multiple depot, fuel-constrained,
multiple vehicle routing problem. In 2016 American Control Confer-
ence (ACC), pages 6489–6494. IEEE, 2016.

[14] Christopher Alexander Arend Tatsch. Route Planning for Long-Term
Robotics Missions. West Virginia University, 2020.

[15] Mirco Theile, Harald Bayerlein, Richard Nai, David Gesbert, and
Marco Caccamo. UAV coverage path planning under varying
power constraints using deep reinforcement learning. arXiv preprint
arXiv:2003.02609, 2020.

[16] Christos Voudouris and Edward PK Tsang. Guided local search. In
Handbook of metaheuristics, pages 185–218. Springer, 2003.

[17] Christos Voudouris, Edward PK Tsang, and Abdullah Alsheddy.
Guided local search. In Handbook of metaheuristics, pages 321–361.
Springer, 2010.

[18] Gregory A Wilkin and Xiuzhen Huang. K-means clustering algo-
rithms: implementation and comparison. In Second International
Multi-Symposiums on Computer and Computational Sciences (IM-
SCCS 2007), pages 133–136. IEEE, 2007.

10

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	METHODS
	Problem statement
	Solution approach
	K-means clustering
	UGV route using traveling salesman problem formulation
	UAV route using vehicle routing formulation
	Solution using Constraint Programming (CP)

	RESULTS
	DISCUSSION
	CONCLUSION AND FUTURE WORK
	References

