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ABSTRACT Computer experiments are widely used to mimic expensive physical processes as
black-box functions. A typical challenge of expensive computer experiments is to find the set
of inputs that produce the desired response. Here, we propose a multi-armed bandit regularized
expected improvement (BREI) method to adaptively adjust the balance between exploration and
exploitation for efficient global optimization of long-running computer experiments with low noise.
To integrate the information of additional exploration and exploitation into the optimization
process, we propose to add a stochastic regularization term to the objective function of the expected
improvement. We also develop a multi-armed bandit strategy based on Thompson sampling for
adaptive optimization of the tuning parameter of the regularization term based on the preexisting
and newly tested points. We discuss the intuitive relation between the proposed BREI and the
mode of stochastic improvement, integrated experimental design, and the upper confidence bound
Gaussian process. Using a case study on optimization of the collision avoidance algorithm in mobile
robot motion planning as well as extensive simulation studies, we validate the proposed algorithm
against some of the existing methods in the literature under different levels of noise.

INDEX TERMS Computer Experiments, Gaussian Process Regression, Expected Improvement,
Multi-Armed Bandit, Thompson Sampling

I. INTRODUCTION

COMPUTER experiments are often used to sim-
ulate the physical processes which are time con-

suming, costly or simply impossible to test [1]. However,
for complex problems they can still be computationally
expensive, and therefore, there is often the desire to
limit the number of simulations performed [2], [3]. A
response surface model, also known as surrogate model,
provides an approximation of the underlying black-box
function that describes the relationship between the
input variables and the response of the computer ex-
periments. Gaussian process (GP) model, which can be
viewed as an extension of the standard regression model,
is one of the most popular non-parametric probabilistic

models for estimating black-box functions [4], [5]. It has
key advantages over most estimation methods, which
includes: (1) ability to fit highly nonlinear functions with
minimal risk of overfitting, and (2) built-in capability for
uncertainty estimation [6], [7]. Once a GP model is fit
using some tested points, the expected response at any
untested point can be easily estimated using the fitted
surrogate model. Comprehensive reviews of the design
and analysis of computer experiments are provided in
[5], [8]–[10].
Computer experiments often require optimizing the

underlying expensive black-box functions. An optimiza-
tion procedure should be employed to find the optimal
input with as few additional tests as possible. We denote
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the black-box function to be optimized (minimized) as
f(x), which is assumed to be a smooth (differentiable)
function of the inputs over the feasible region χ ⊂ Rd.
It is commonly assumed that the observed responses
of the black-box function are corrupted by some noise,
y = f(x) + ε. The only available information is the
response value y after testing the function at a given
input point x.

To minimize a black-box function, a space filling
design such as Latin hypercube design (LHD) [11], [12],
sphere packing [13], or uniform designs [14] is used to
generate a small number of initial input points at which
the computer experiments are tested and respective
responses are collected. Next, a GP model is fit and
updated after testing each new point until the optimal
point is found. The selection of new test points is
often guided by an acquisition function. There is a vast
literature on different acquisition functions for selecting
the next most promising point to test [15]–[17]. Efficient
global optimization is one of the most popular algo-
rithms that uses expected improvement (EI) acquisition
function for selection of the next most informative point
[18].

Several extensions of the EI algorithm have been
proposed in the literature to improve its performance
and also extend its application to constrained problems
[19]–[22], noisy responses [23], and parallel optimization
[24]–[26]. Recently, [27] provided a comprehensive review
of the EI extensions designed for parallel optimization,
multiobjective optimization, constrained optimization,
noisy optimization, multi-fidelity optimization and high-
dimensional optimization. Sequential kriging optimiza-
tion. (SKO) [28] is an extension of EI that augments
the expected improvement acquisition function to in-
clude the effective best solution instead of the observed
minimum, which might differ from the true minimum
of the function. Besides EI, knowledge gradient (KG)
is another popular acquisition function that revisits the
risk averse assumption made in EI’s derivation, wherein
the decision maker is only willing to return a previously
tested point as the final solution [29], [30]. Known to
work well for problems with noisy functions, KG allows
to return to more promising solutions, which might have
not been previously tested, by maximizing the expected
increase in the conditional expected solution due to
sampling [31]. However, as shown in our numerical
study, KG doesn’t provide significant advantage over
classical EI when experiments have low noise. Besides
EI-based methods, there also exists a group of algo-
rithms that focus on optimizing expensive functions [32],
[33]. Algorithms that are developed based on popular
sampling techniques like upper confidence bound (UCB)
and Thompson sampling, are discussed in [15], [34]–[41].
A survey of different algorithms in bandit setting are
presented in [42].

Most of the EI-based acquisition functions in the

literature, only consider the information of the expected
value of possible improvement by each candidate test
point. While informative, the expected value (of possible
improvement) does not fully capture the uncertainty
of the stochastic improvement by each candidate test
point, which can help with better adjustment of the ex-
ploration and exploitation trade-off based on the system
under consideration and the response value of the points
already tested.
Here, we propose an acquisition function based on

adaptive regularization of EI by each candidate test
point to further improve the balance between explo-
ration and exploitation. The proposed global optimiza-
tion method has two major contributions: (1) regular-
izing the popular expected improvement (EI) acqui-
sition function to better incorporate the information
of additional exploration and exploitation to the opti-
mization process, and (2) creating an efficient Bandit
framework for optimizing the tuning parameter of the
proposed regularized expected improvement, to improve
the exploration vs exploitation balance. We expect the
proposed method, which we refer to as the multi-armed
bandit regularized expected improvement (BREI), to
identify sequence of points that quickly converge to the
global optimum of expensive computer experiments. The
proposed BREI algorithm is most suitable for the ap-
plications involving expensive black-box functions with
no or low noise for which the resources are limited or
the cost of testing the points is very high. This include
expensive computer experiments, some robotic tests as
provided in the case study, etc. The proposed algorithm
helps in finding the global optimum of a function with
as few evaluations as possible. To achieve that the
algorithm regularizes the expected value of possible
improvement by each candidate point. Generally, for
the situations where the evaluations are easily obtained,
having an acquisition function like BREI might not be
needed. However, for situations in which each evaluation
might take days/weeks to complete or costs a lot, the
BRIE acquisition function which help in providing the
optimum point with as few evaluations as possible is of
great help.
We provide a brief description of the related works in

Section II. We explain the proposed method in Section
III. In Section IV, we provide the detail description of
the proposed algorithms. In Section V, we evaluate the
performance of the proposed algorithm along with some
of the existing methods using a case study and extensive
simulations under different levels of noise. Finally, we
provide the concluding remarks in Section VI.

II. RELATED WORKS
Here, we provide a brief description of the related
methods. Throughout the paper, we use z to denote
the design vector of the tested (observed) points, and
x to denote the design vector of any (either tested or
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untested) point. We also use n to denote the number of
tested points, and d to denote the dimensionality of the
input variables (X).

A. GAUSSIAN PROCESS REGRESSION
Having some tested points (training set) represented by
input-output pairs (zi, yi), where yi might be corrupted
by some noise εi, GP defines a prior over an unknown
link function f , and gives the posterior after seeing
the data [43]. More specifically, the GP regression is
defined as yi = f(zi) + εi for i = 1, .., n. The functional
evaluation at the untested point x is denoted as f∗.
Y = (y1, y2, .., yn)T is the observed outputs at the
tested points Z = {z1, z2, .., zn}. According to the joint
distribution of the tested outputs and untested output
we have:[

Y
f∗

]
∼ N

(
0 ,
[
K(Z,Z) + σ2

nI K(Z, x)
K(x, Z) K(x, x)

])
(1)

whereK(Z,Z),K(Z, x),K(x, Z),K(x, x) are the covari-
ance between the tested and tested points, tested and
untested points, untested and tested points, untested
and untested points respectively, and K(., .) is an
appropriate kernel function to evaluate the covari-
ance. Here, we consider the squared exponential kernel
K( zi, zj) = σ2

fexp(−
‖ zi− zj‖2

2l2 ), where σ2
f denotes the

signal variance, and l denotes the characteristic length
scale. Let K(Z,Z) = KZZ ,KZx = K(Z, x),KxZ =
K(x, Z),Kxx = K(x, x), by conditional distribution, we
get:

E(f∗(x)) = KxZ(KZZ + σ2
nI)−1y (2)

cov(f∗(x)) = [Kxx −KxZ [KZZ + σ2
nI]−1KZx] (3)

For a given untested point (x), the predictive mean (µx)
is simply E(f∗(x)) in Equation (2), and the predictive
variance s2

x is a diagonal element of the covariance
matrix cov(f∗(x)) in Equation (3).

B. BANDIT PROBLEM
The multi-armed bandit framework is commonly used
to formulate the trade-off between exploration and ex-
ploitation in sequential decision making [44]. The bandit
problem aims to maximize the rewards of a player who
plays an arm i out of the h arms of a slot machine
at each time step t over a long run. After playing one
arm at each time step, the player receives a real valued
stochastic reward that is independently drawn from a
fixed and unknown distribution. The player selects the
arm to play based on the rewards of the t−1 plays. If the
player myopically chooses the arm that gives the highest
rewards in previous plays (exploitation), he/she might
fail to discover the arm that provides the highest total
reward due to the stochasticity of the rewards. On the
other hand, if the player chooses to randomly select the

arm at each time step to explore the reward of different
arms (exploration), the opportunity of playing the best
arm multiple times decreases along with a decrease in
the total reward. So, the multi-armed bandit problem
helps in deciding the best arm to play by balancing
between the exploration and exploitation to maximize
the total rewards of the player. Thompson sampling [45]
is one of the popular (Bayesian) approaches for solving
the multi-armed bandit problem. It is also known as the
posterior sampling or probability matching as it selects
the arm based on posterior probability to be the best
arm [46], [47]. Compared to other multi-armed bandit
methodologies like UCB, Thompson sampling has the
ability to handle wide range of information models that
go beyond observing the individual rewards alone [39].

C. EXPECTED IMPROVEMENT (EI)
EI is one of the most common Bayesian optimization
methods. Let, the stochastic improvement of a candi-
date test point x be Ix = max(fmin − yx, 0), where
fmin = min(y1, y2, .., yn), and yx ∼ N (µx, s2

x) is the
random variable that corresponds to the predicted re-
sponse at x, with µx = E(f∗(x)), and s2

x = var(f∗(x)).
The expected value of the improvement is obtained
as E(I(x)) = E(max(fmin − yx, 0)). The closed form
solution for the EI is given as:

E(Ix) = (fmin − µx)Φ(fmin − µx
sx

) + sxφ(fmin − µx
sx

)
(4)

where φ(.) is the standard normal density function,
and Φ(.) is the standard normal distribution function.
EI often provides acceptable performance in reducing
the number of test points for global optimization of
expensive black-box functions. However, as the name
implies, EI only utilizes the expected value of the ran-
dom variable I(x) and does not consider the uncertainty
of the stochastic improvement. In the next section,
we propose to extend the EI method by a specialized
regularization term to better capture the uncertainty the
stochastic improvement to boost its performance.

III. PROPOSED METHODOLOGY
In this section, we first derive the formulation for the
standard deviation of stochastic improvement by a can-
didate test point. Next, we develop an acquisition func-
tion (REI) which uses some similar terms as standard
deviation of the stochastic improvement for selecting the
next most informative test point. Finally, we present an
adaptive strategy for optimizing the tuning parameter
of the proposed acquisition function (BREI), followed
by the high-level algorithms to implement the proposed
method.

A. STANDARD DEVIATION OF IMPROVEMENT
To derive the formulation of the standard deviation
of improvement, we use the fundamental definition of

VOLUME 4, 2016 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3095755, IEEE Access

Meka et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

the standard deviation. Statistically, the uncertainty of
improvement after adding each test point is defined as
σ(Ix) =

√
E(I2

x)− E(Ix)2. After some tedious algebraic
calculations, the closed form solution for σ(Ix) is derived
as:

σ(Ix) = sqrt
[
(fmin − µx)2Φ(fmin − µx

sx
)+

2sx(fmin − µx)φ(fmin − µx
sx

)−

s2
x((fmin − µx

sx
)φ(fmin − µx

sx
)− Φ(fmin − µx

sx
))−

((fmin − µx)Φ(fmin − µx
sx

) + sxφ(fmin − µx
sx

))2
]

(5)

B. REGULARIZED EXPECTED IMPROVEMENT
The proposed regularized expected improvement (REI)
integrates the information of the expected improvement
(EI) with a regularization term that utilizes some sim-
ilar terms as the standard deviation of the stochastic
improvement.

Adding the standard deviation of improvement as
shown in Equation 5 to the EI acquisition function as
a regularization term results in small to moderate im-
provement in the efficiency (number of points) of black-
box optimization as shown in Appendix E. Supported
by extensive simulation analysis, we propose to add
a revised version of Equation 5 to the EI acquisition
function as regularization term to further improve the
optimization performance:

REIRevised = E(Ix) + λσ∗(Ix) (6)

where λ is a tuning parameter balancing the effect of the
regularization term, and σ∗(Ix) is calculated as:

σ∗(Ix) = sqrt
[
(fmin − µx)2Φ(fmin − µx

sx
)+

2sx(fmin − µx)222φ(fmin − µx
sx

)−

s2
x((fmin − µx

sx
)φ(fmin − µx

sx
)− 111)−

((fmin − µx)Φ(fmin − µx
sx

) + sxφ(fmin − µx
sx

))2
]

(7)

A positive λ value encourages more exploration, spe-
cially around the boundaries of the feasible region. A
negative λ value encourages more exploitation around
the estimated optimum of the underlying function. Also,
a zero λ value reduces the proposed acquisition function
to EI. In Section III-C, we provide a detail discussion
about the tuning parameter λ and its range. We also
propose a Thompson sampling approach to adaptively
optimize λ based on the existing and newly added test
points to the design.

It may also be worth noting, adjustments of standard
deviation of stochastic variables, such as σ∗(Ix) which

we are considering as the regularization term in our
proposed REI acquisition function, have been commonly
used in the statistical analysis [48], regression modeling
[49], and deep learning [50].

C. ADAPTIVE OPTIMIZATION OF THE TUNING
PARAMETER: EXPLORATION AND EXPLOITATION
TRADE-OFF
The second term in Equation (6) adds a bias to the EI
acquisition function to better adjust the balance between
exploration and exploitation. The tuning parameter λ
controls the level of trade-off between exploration and
exploitation and therefore has a significant impact on
the performance of the proposed method. Theoretically,
λ can take any real value between (−∞,∞), with pos-
itive values encouraging more exploration and negative
values encouraging more exploitation. Meanwhile, to
keep the bias (regularization) term small compared to
the first/original term (the EI acquisition function), the
tuning parameter should be set to as small value. Using
simulation, we found setting λ = −0.75 provides an
acceptable performance (in comparison to the EI) in
most cases.
Meanwhile, a better strategy is to adaptively optimize

the tuning parameter within a small interval at each
iteration, because the optimal level of exploration and
exploitation changes dynamically based on newly tested
points and their observed responses. Based on exten-
sive simulations we found, limiting the range of λ to
(−0.75,+0.75) provides the best performance.
In machine learning, tuning parameters are usually

optimized using cross validation, i.e. ridge regression.
However, sequential optimization of the tuning param-
eter at each iteration over a continuous space requires
considerable computational effort. To reduce the compu-
tational complexity of the proposed method, we propose
an efficient adaptive optimization strategy based on
Thompson sampling for multi-armed bandit where the
candidates values of λ are treated as the arms of a
slotting machine. The proposed tuning parameter opti-
mization algorithm also utilizes the real gap information
of the previously selected arms (λ values). The gap
information helps to penalize for the arms that provide
less improvement than expected. The optimal λ value
selected by Thompson sampling at each iterations is
used by the proposed BREI algorithm to select the most
informative point for next evaluation:

1) Identifying the Set of Candidate Values for the Tuning
Parameter
Instead of using a continuous range of possible values
for the tuning parameter, we consider a small set of
candidate values, namely λc = {−0.75 ≤ λ1, ..., λh ≤
0.75}. While there are different strategies for select-
ing the candidate values of the tuning parameter, we
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simply consider 7 equally distanced candidate values ,
λc = {−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75}. Such small
set of candidate λ values reduce the search space without
having significant negative impact.

2) Select the Optimal Value of the Tuning Parameter using
Thompson Sampling
Given the finite set of candidate values for λ, and the
sequential nature of tuning parameter optimization in
the proposed global optimization method, we propose
Thompson sampling to conduct a quick linear search
among the candidate λ values to select the optimal
value (λ∗) at each iteration. Thompson sampling treats
each value in the candidate set λc as an arm of multi-
armed bandit problem and uses the information of the
tested points to select the best arm, which represents the
optimal tuning parameter, to be used in each iteration.

Meanwhile, unlike classical problems of optimizing
the tuning parameter using cross validation, in global
optimization of expensive (computer) experiments only
a small set of tested points is available, which should be
used for both the training of the model and optimization
of the tuning parameter. Therefore, in each iteration,
just before selecting the next candidate point, we split
the set of (already) tested points (Z) into two subsets,
P (validation) and Q (train), such that the set P
contains the first and the second minimum response
points, and the set Q contains the rest of the points. The
justification for using only the two lowest response points
for the validation set P is to reduce the computational
complexity. Reducing the size of P to only two points
(lowest two responses), minimizes the computational
effort for identifying whether an arm (candidate λ) is
able to correctly identify the minimum point in the
validation set, and is discussed in detail below.

After splitting the set Z into two subsets, P and Q,
we fit a Gaussian process with the points in set Q and
test each of the arms i ∈ {1, ..., h} for identifying the
minimum response between the two points in P . We
then calculate the expected reward (Rt) for selecting
each arm as:

Rt[i] = min
x∈Q

(Y (x))− Y (x′) (8)

where t denotes the iteration (time), which is also equiv-
alent to the number of additional tested points added to
the design, min

x∈Q
(Y (x)) is the minimum response in

set Q, and Y (x′) is the response of the selected point by
arm i from set P . The expected reward in Equation (8)
will always be positive as the minimum response value
of the points in set P is less than the response value of
any of the points in set Q. The reward approximates
the gap between the correct and incorrect choice of
minimum response points among the existing points.

Once the expected reward of each arm is calculated, the
probability of selecting each arm i is calculated as:

St[i] = Rt[i]∑h
i=1 Rt[i]

(9)

Then, the optimal arm (i∗t ) is chosen stochastically with
respect to St[i].

3) Improve Thompson Sampling with Real Gap Information

After observing the response value of a point tested at
iteration (time) (t − 1), its information can be used to
improve the estimated reward of the associated arm
for the next iteration (t). Given the response value
of the point tested at iteration (t − 1), the real gap
information of the selected arm at iteration (t − 1)
is calculated as Gi∗

t−1
= min

x∈Zt−1
(Y (x)) − Y (xt),

where min
x∈Zt−1

(Y (x)) is the minimum response in
set of tested points up to iteration (t − 1), and xt is
the response value of the point identified by BREI at
(t−1). The expected reward Rt[i∗t−1] for the last selected
arm at iteration (t) can be updated to incorporate
the real gap information Gi∗

t−1
. In our paper, we use

Rt[i∗t−1] = 0.2Rt[i∗t−1] + 0.8Gi∗
t−1

, which includes 20%
of the current reward and 80% of real gap information
from iteration (t− 1).

IV. PROPOSED ALGORITHMS

Algorithm 1 illustrates the major steps of the proposed
multi-armed bandit regularized expected improvement
(BREI) algorithm for global optimization of expensive
computer experiments.

VOLUME 4, 2016 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3095755, IEEE Access

Meka et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

A. GLOBAL OPTIMIZATION USING BREI
Algorithm 1. BREI for global optimization of

expensive computer experiments
Input: Set of pre-specified points using LHD (Z)
Output: Global minimum of the function (fmin)

Estimated GP (f(x))
Step 1. Evaluate the function at pre-specified

points Z to obtain the responses
Y = (y1, y2, .., yn)

Step 2. Create surrogate model using the
points in Z (tested points)
f(x) = KxZK

−1
ZZY

Step 3 Until satisfying the desired stopping
criteria, i.e. number of additional
test points (t∗)

Step 3.1 Optimize the tuning parameter λ
using Algorithm 2

Step 3.2 Use an optimization algorithm,
i.e. PSO, to select x∗ that maximizes
Equation (6)

Step 3.3 Z ← Z ∪ x∗, n← n+ 1

Step 3.4 f(x) = KxZK
−1
ZZY

fmin = min(Y )
Go to Step 3.1

The algorithm essential input includes the set of pre-
specified points (Z) generated using a space filling design
such as Latin hypercube design. The outputs of the
algorithm include the minimum of the function (fmin),
and the estimated GP (f(x)). The algorithm begins with
testing the initial set of pre-specified points and their
response values (Y ) (Step 1). Next, it uses GP to create
the surrogate model using the tested points (Z) (Step
2). Then, the tuning parameter λ is optimized using
the Algorithm 2 (Step 3.1). Having the optimal value
of the tuning parameter, particle swarm optimization
(PSO) is used to solve Equation (6) to identify the next
best candidate test point (Step 3.2). The selected point
(x∗) is then tested and moved to the set of tested points
(Z) before checking the stopping criterion for initiating
another iteration (Step 3.3). Here, we consider a pre-
specified number of additional test points (t∗) as the
stopping criterion. After each iteration, GP is used to
update the fit and also the current minimum point (Step
3.4).

B. OPTIMIZATION OF THE TUNING PARAMETER
Algorithm 2 demonstrates the proposed algorithm for
optimizing the tuning parameter of the BREI algo-
rithm. The algorithm inputs include the set of candi-
date values for the tuning parameter (λc), the most

current set of tested points (Z) along with their re-
spective observed responses (Y ) (including both the
initial points and additional/augmented points), and
the most current number of tested points (t) added
to the initial design, which also shows the iteration
(time) in multi-armed bandit setting. As discussed in
Section III-C1, to reduce the computational complexity
of the optimization algorithm, we considered a finite
set of seven candidate values for the tuning parameter,
λc = −0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75. The output
of the algorithm is the optimal value of the tuning
parameter (λ∗).

The algorithm begins with dividing the set of existing
tested points (Z) into two subsets of P and Q, with
P consisting of the two points with minimum response
values, and Q consisting of the rest of the points (Step
1). Next, we fit a surrogate model using the points in Q
(Step 2). Then, for each λ in the candidate set λc, we
use the BREI algorithm to select the next best test point
(x′) from the set P (Step 3.1). Then, we calculate the
reward of each arm based on the observed gap between
the minimum response value of the points in Q and the
response value of the function at x′ (Step 3.2). When
t > 0, the expected reward of the arm that has been used
in the previous iteration (t−1) (Step 3.3.1) is updated to
include the real gap information of the arm (Gi∗

t−1
) (Step

3.3.2). This simply penalizes the previously selected arm
(i∗t−1), if its choice of tuning parameter did not help in
selecting the candidate test point that actually (further)
decreased the response value of the function. Next, the
selection probabilities St of the arms are updated based
on the estimated rewards (Step 4). Finally, a stochastic
policy (Step 5) is used to select the arm that provides
the optimal λ∗ value to be used for selecting the next
best candidate test point (Step 6).
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Algorithm 2. Multi-armed bandit optimization
of the tuning parameter (λ)

Input: Set of n tested points (Z, Y ),
Current number of test points added
to the design (t, t < t∗),
Set of h candidate values for the
tuning parameter (λc = {λ1, ..., λh})

Output: Optimal value of the tuning
parameter (λ∗)

Step 1. min1 = argminx∈Z(Y (x)),
min2 = argmin

x∈Z−min1(Y (x)),
P = {min1,min2}, Q = Z − P

Step 2. Fit a surrogate model based on the
points in Q (Equations (2) and (3))

Step 3. For each λi=1,...h ∈ λc:
Step 3.1. Use λi and BREI (Equation (6))

to select x′ from P
Step 3.2. Calculate the reward of each arm

as Rt[i] = min
x∈Q

(Y (x))− Y (x′)
Step 3.3. If t > 0, for the arm selected in

the last iteration (i∗t−1):
Step 3.3.1. Gi∗

t−1
= min

x∈Zt−1
(Y (x))− Y (xt)

Step 3.3.2. Rt[i∗t−1] = 0.2Rt[i∗t−1] + 0.8Gi∗
t−1

Step 4. St[i] = Rt[i]∑h

i=1
Rt[i]

Step 5. Optimal arm i∗t is selected stochastically
with respect to St[i]

Step 6. λ∗ = λc[i∗t ]

V. RESULTS AND DISCUSSION
In this section, we validate the performance of the
proposed BREI method along with a number of ex-
isting methods in the literature including expected im-
provement (EI), sequential kriging optimization (SKO),
knowledge gradient (KG) and Gaussian process based
UCB (GPUCB) using both a case study and simulated
experiments. The justification for considering the above
four algorithms for comparison is that they are among
the most common and/or the best performing algo-
rithms in the literature. To ensure a fair comparison
between the BREI and the other comparing methods, we
consider 8 commonly used response surface models in the
literature. We run each experiment 100 times and report
the average of the observed minimum response collected
after each of the 100 additional points. We also report
the median, 25th, and 75th performance percentiles in
the Appendix. Furthermore, we test each response model
at different noise levels to understand the capability and
limitations of the proposed method in comparison to
the other methods. We begin with a brief discussion of
each of the comparing methods and the performance
metric chosen for the analysis of the results. Next,
we illustrate the result of a case study for the weight
optimization of a dynamic window approach (DWA) in
obstacle avoidance algorithm for mobile robots planning.

Finally, we describe the result of a simulation study
based on eight nonlinear response models of 2 to 10
dimensions with different noise levels. In our paper, we
use MATLAB for coding and GPML library [51] for
optimizing the hyperparameters of the GP model.

A. COMPARING METHODS
Here, we provide a brief description of the comparing
methods, except the EI and GPUCB which are presented
earlier in Section II-C and Section ?? respectively.

1) Sequential Kriging Optimization (SKO)
SKO [28] selects the next test point that maximizes the
acquisition function as given in Equation (10)

E(I(x)) = [(µx∗∗ − µx)Φ(µ
∗∗
x − µx
sx

)+

sxφ(µ
∗∗
x − µx
sx

)](1− σn√
s2
x + σ2

n

) (10)

where x∗∗ is the current effective best solution. Different
from the EI method that uses the best observed solution
(fmin), SKO utilizes the current effective best solution
from the utility function ux = −µx − csx, where x ∈ Z,
and c is a tuning parameter generally set to 1.

2) Knowledge Gradient (KG)
KG [52] selects the next test point by maximizing the
improvement function as given in Equation (11) [53]

I(x) = min
x ε Z∪xn+1

(µx)− min
x ε Z∪xn+1

[µx+ cov(x, xn+1)√
s2
xn+1

+ σ2
n

zr]

(11)
where zr is the standard normal variable. KG assumes
the conditional mean (through the model) might be
closer to the true observation rather than the functional
evaluations.

B. PERFORMANCE METRIC
Since the main objective of the proposed BREI al-
gorithm is to efficiently find the global minimum of
the computer experiments, we consider the observed
response of the candidate test point suggested by each
of the comparing methods at each iteration, namely
fmin = minx ε Z(y(x)), as the performance metric [28],
[54], [55]. In order to achieve a high level of confidence
over the results, all experiments are repeated hundred
times and the average is reported. Additionally, we re-
port the median, 25th, and 75th performance percentiles
in the Appendix.

C. CASE STUDY: ROBOTS MOTION PLANNING
In this section, we illustrate the results of a case study
for optimization of the weight of the dynamic win-
dow approach (DWA) in obstacle avoidance algorithm
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for robots motion planning, comparing the proposed
method with expected improvement (EI), sequential
kriging optimization (SKO), knowledge gradient (KG)
and Gaussian process based UCB (GPUCB). The DWA
is a classical motion planning algorithm for mobile
robots developed by [56], that outputs the optimal
translational and rotational velocity commands (ν, w) to
navigate non-holonomic vehicles through obstacle free
paths to a goal. The noise free DWA algorithm has
the computational complexity of O(n). In general, the
physical experiment is conducted using a mobile robot
that has a non-holonomic mobile base as shown in Figure
1. However, as the physical experiment is expensive

FIGURE 1: An illustration of a mobile robot

to evaluate, typically a simulation environment [57]
is developed using MATLAB which is considered for
our study. The algorithm works by discretely selecting
obstacle free trajectories in a dynamic window until the
goal is reached. The dynamic window is a constrained
velocity search space constituting of velocities based on
the kinematic limitations of the robot and admissible
velocities that are reachable within the next simulation
time slice. The sets of translational (ν) and rotational
velocity (w) pairs in the dynamic window are used
in the evaluation of the objective function. The (ν, w)
pair selection within the search space is guided by the
objective function shown in Equation (12).

G(ν, w) = αheading(ν, w) + βdist(ν, w) + γvel(ν, w)
(12)

The objective function includes three sub functions.
The heading(ν, w) function measures the orientation of
the robot toward the goal. Heading, tested by 180 − θ,
increases as the target angle (θ) to goal reduces. The
dist(ν, w) function ensures obstacle free paths by cal-
culating the norm distance to the closest obstacle per
trajectory roll out in the navigation space. The vel(ν, w)
expression measures the forward progress of the robot.

This is basically a projection of the translational velocity
v of the robot, updated every time step. The sub-
functions in Equation (12) are indirectly dependent
on new velocity pair inputs (ν, w). The velocity pair
updates are control inputs that change the closest
obstacle position and target angle θ which are direct
variables used in calculating the heading direction and
distance to obstacle components. Velocity pair updates
are evaluated using kinematic equations in a constrained
search space (see [56] for detailed explanation). The
combination of weight parameters α, β, γ play an im-
portant role in the objective function and can generate
different navigation outcomes as shown in the Figure 2
by introducing bias based on the weight value. A com-
mon alternative method for selecting weight sets α, β, γ
is a simple manual tuning, guided by the navigation
behavior of the robot, as adopted in [56], [58]–[60]. This
is simply a trial and error method, adjusting the weights
based on the navigation behavior at the end of each
experiment. We apply the BREI optimization algorithm

(a) (b)

FIGURE 2: Navigation outcomes of the weight param-
eter combinations (a) α = 1, β = 0, γ = 0.58, and (b)
α = 0.19, β = 0.85, γ = 0.61

along with the other comparing methods to choose the
optimal weight parameters (α, β, γ ) to minimize the
time taken to navigate from a starting point to the
ending point with 10 fixed obstacles. We begin with
creating a Latin hypercube design of 30 points (weight
parameters). We evaluate the time taken to navigate
from a starting point to the ending point based on each
set of weight parameters and use them as the initial set
of points. In addition to the initial points, 100 additional
test points (weight parameters) are tested sequentially
and the associated travel times are collected. Each test
is replicated hundred times and the average is reported.
We also report the median, 25th, and 75th performance
percentiles in the Appendix.
Figure 3 illustrates the mean performance of the

proposed BREI acquisition function in comparison to
the expected improvement (EI), sequential kriging opti-
mization (SKO), knowledge gradient (KG) and Gaus-
sian process based UCB (GPUCB) methods for the
case study for the initial set of points as well as the
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100 additional evaluation points along with the 95%
confidence interval. For the initial set of test points
(parameter settings) as well as the first 10 additional
points, the proposed BREI acquisition function shows a
similar performance to the other comparing methods.
We believe these points (t < 10) are used by the
comparing methods to explore the underlying function.
However, the proposed BREI method shows a significant
improvement over the other comparing methods after
the 10th additional point (t > 10). Also, as the number
of additional points increases, the proposed acquisition
function maintains and/or increases its gap over the
other comparing methods.

FIGURE 3: The minimum travel time (response values)
averaged over 100 replicates of the mobile robot case
study for the initial + 100 additional points (weight
parameters) suggested by the comparing methods. The
dotted lines represent the respective 95% confidence
interval of the observed minimum responses at each
iteration.

Figure 4 complements the result of Figure 3 by
providing the boxplot of the average (mean) of the
observed minimum responses of the comparing methods
over the 100 additional points (iterations). As shown in
the Figure 4, the proposed method provides the best
performance, which verifies its improvement over the
other comparing methods.

We also validate the results of Figures 3 and 4 us-
ing the Wilcoxon rank test for the significance of the
difference between the observed minimum response of
the proposed BREI method and the other comparing
methods. The Wilcoxon rank test shows a p-value of
0 for all of the four pairwise comparisons between the
BREI and EI, BREI and SKO, BREI and KG and BREI
and GPUCB to statistically validate the the significance
of the improvement made by the proposed method.

FIGURE 4: The boxplot of the average (mean) of
observed minimum response of the comparing methods
over the 100 additional evaluation points for the mobile
robot case study.

D. SIMULATED EXPERIMENTS: NONLINEAR
RESPONSE MODELS
In this section, we evaluate the performance of the
proposed BREI acquisition function with those of EI,
SKO, KG and GPUCB over eight nonlinear response
models of two, three, six and ten dimensions at different
levels of noise including 0%, 1% and 5% of the mean
value of the response models. These response models are
presented in Figure 5. Similar to the case study, for each
of the comparing methods, we create a Latin hypercube
design of 10d points, where d represents the number of
dimensions. We evaluate the function at each point and
use them as the initial set of tested points. We use the
number of additional points, which is set to t∗ = 100, as
the stopping criterion.
Figure 6 illustrates the mean performance of the

proposed BREI acquisition function along with the 95%
confidence interval in comparison to the expected im-
provement (EI), sequential kriging optimization (SKO),
knowledge gradient (KG) and Gaussian process based
UCB (GPUCB) methods for different response models
and different noise levels (0%,1% and 5%)We also report
the median, 25th, and 75th performance percentiles in
the Appendix. As shown in Figure 6, when there is no
noise (0% noise), the BREI method outperforms the
other comparing methods over most nonlinear response
models, in terms of minimum number of tests required
to minimize the black-box function. For the 1% and 5%
noise levels, the BREI method outperforms other com-
paring methods for high dimensional response models,
i.e. 6d and 10d, whereas for low dimensional response
models i.e. 2d and 3d, the BREI performance is mixed
with KG and GPUCB.

The results demonstrate the proposed BREI method
provides the most competitive performance for high
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FIGURE 5: Non-linear response models considered for
the comparisons.

dimensional functions and low noise in general. Mean-
while, as the dimensionality of the functions increases
(from 2d to 10d), the proposed algorithm generally
increases its advantage over other methods, even for
high noise levels. We believe this is due to the contri-
bution of the proposed regularization term along with
the adaptive optimization of the tuning parameter that
helps improving the exploration and exploitation of the
design space. However, for low dimensional functions,
i.e. 2.1 and 2.2, all of the comparing methods provide
a competitive performance at different levels of noise.
Therefore, the proposed algorithm does not provide sig-
nificant improvement over the best of existing methods,
namely knowledge gradient, when the function is low
dimension and the noise level is high. Figure 7 provides
the boxplot of the mean performance of each of the com-
paring methods, over the 100 replicates of the observed
response, for each of the response models across the
initial set of points as well as the 100 additional points.
As shown in Figure 7, for majority of cases, the proposed
BREI method provides the best performance, in terms of
the 1st, 2nd and 3rd quartiles, compared to the others.
Also, for most cases, BREI shows a lower variance in the
boxplot, which can be attributed to better exploitation
of the points near the global optimum, which results
in faster convergence in comparison to other methods.
We believe this is because of the better adjustment
of exploration and exploitation by the proposed BREI
acquisition function.

TABLE 1: P-values of the Wilcoxon rank test - Simu-
lated Experiments.

2.1 2.2 3.1 3.2 6.1 6.2 10.1 10.2

BREI

EI

0%

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SKO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

KG 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

GPUCB 0.06 0.0 0.06 0.89 0.0 0.0 0.0 0.0

EI

1%

0.0 0.56 0.0 0.23 0.0 0.0 0.0 0.0

SKO 0.23 0.0 0.0 0.09 0.0 0.0 0.0 0.0

KG 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

GPUCB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

EI

5%

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SKO 0.0 0.19 0.0 0.0 0.0 0.0 0.0 0.0

KG 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

GPUCB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Finally, Table 1 provides the result of the Wilcoxon
rank test for the significance of the difference between
the observed minimum response of the proposed method
against the other comparing methods, where lower val-
ues show an increased probability of difference in the
observed minimum response. As shown in the Table 1,
the Wilcoxon rank test also signifies the improvements
made by the proposed method at low noise and high
dimensions, which further validates the earlier results.
To better illustrate the performance of the comparing

methods, Figure 8 visualises the distribution of the
selected points by each method for the popular six
hump camel (SHC) function (response model 2.1) at 0%
noise. The SHC function has two global minimum at
x1 = (0.0898,−0.0898) and x2 = (−0.7127, 0.7127) with
the corresponding response value of y = −1.0316. All of
the comparing methods start with selecting the same set
of initial points based on the LHD design. Next, they use
their specialized acquisition functions, i.e. EI, SKO, KG,
GPUCB and BREI, to identify the global minimum. As
shown in the Figure 8, all of the comparing methods
provide competitive performance by exploring the areas
around the global minimum. Meanwhile, the proposed
BREI algorithm,in addition to GPUCB, provide the best
performance by quickly exploiting the knowledge gained
from the first few additional test points (4 points) and
converges to the global minimum.

Figure 9 complements the results of Figure 8 by illus-
trating the distribution of the selected points by each of
the comparing methods for the more complex response
model 2.2 at 0% noise. Similar to the preceding results,
the proposed BREI acquisition function demonstrates a
superior performance by reaching to the global optimum
with fewer number of tests, namely 16 additional test
points. As both the response models tested are of lower
dimension and lower noise, GPUCB also provided best
performance but it can be seen that the algorithm
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FIGURE 6: Average (mean) of the 100 replicates of the observed response values for each of the comparing methods
after each additional test for the simulated experiments. The dotted lines represent the respective 95% confidence
interval of the observed minimum responses at each iteration.

VOLUME 4, 2016 11



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3095755, IEEE Access

Meka et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 7: Boxplots of the mean performance of the
comparing methods, including EI, SKO, KG, GPUCB
and BREI, over the hundred replicates of the observed
responses at the initial set of points as well as additional
points for different nonlinear response models (rows) and
different levels of noise (columns).

focused only on exploitation and did not explore at all.
As it only exploited, for response model 2.1, it could not
investigate any points around the other global minimum;
whereas BREI was able to search around both the global
minimums.

E. COMPUTATIONAL COMPLEXITY
The acquisition function of the proposed BREI acqui-
sition function as shown in Equation (6) has three
components: (1) the expected improvement component
E(Ix), (2) the regularization term, σ∗(Ix), and (3) the
tuning parameter λ. According to [61] the computational
complexity of E(Ix) for optimization of expensive black-
box functions is O(n3). The regularization term of
BREI acquisition function (σ(Ix)) has similar terms as
expected improvement component and therefore can be
calculated with the same computational complexity. For

FIGURE 8: Comparing the distribution of the selected
points by the proposed BREI algorithm vs. EI, SKO,
KG and GPUCB algorithms for response model 2.1
at 0% noise., where the global minimum is shown in
black (star), the initial set of tested points are in red
(circle), and the additional tested points are shown in
blue (diamond)

FIGURE 9: Comparing the distribution of the selected
points by the proposed BREI algorithm vs. EI, SKO,
KG and GPUCB algorithms for response model 2.2
at 0% noise., where the global minimum is shown in
black (star), the initial set of tested points are in red
(circle), and the additional tested points are shown in
blue (diamond)

the tuning parameter λ, different from the traditional
cross validation methods where the tested points are
divided randomly into subsets resulting in fitting the
surrogate model multiple times, the proposed Thompson
sampling based approach fits the surrogate model only
once using points in Q which takes O(n3) (the com-
putational complexity of adding gap information, etc. is
negligible). Consequently, the computational complexity
of the proposed algorithm is O(n3).

VI. CONCLUSION
In this paper, we proposed a novel acquisition function
based on the multi-armed bandit regularized expected
improvement (BREI) for efficient global optimization
of expensive computer experiments with low noise.
We extended the expected improvement by adaptive
regularization based on each candidate point. We also
proposed a Thompson sampling algorithm under multi-
armed bandit setting to adaptively optimize the tuning
parameter of the proposed BREI acquisition function to
balance the exploration and exploitation based on the
previously tested points. Using a case study in robot
motion planning and several nonlinear response models
of 2 to 10 dimensions with different levels of noise,
we studied the performance of the proposed acquisition
function in comparison to some of the most popular
methods in the literature including Expected Improve-
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ment (EI), Sequential Kriging Optimization (SKO),
knowledge gradient (KG) and Gaussian process based
UCB (GPUCB). The proposed method demonstrates
competitive performance to the existing methods in the
literature for both the case study as well as the simulated
experiments in terms of the predicted global minimum
under low level of noise. It also shows improvement over
the existing methods for higher dimensions. In many ap-
plications involving expensive black-box functions with
low or no noise, such as long running computer codes,
where the resources are limited, or the cost of testing
the points is very high, this framework reduces the
number of expensive test points in global optimization
by adaptively choosing the most informative regions to
explore and exploit.

APPENDIX.
A. COMPARISON OF DIFFERENT SCENARIOS FOR
SELECTING THE TUNING PARAMETER
Here, we provide the comparison of proposed BREI
method with different λ selection scenarios: (1) In our
comparison, we tested the BREI method using fixed
λ values instead of using proposed Thompson sam-
pling based tuning parameter optimization algorithm.
In addition to fixed λ value study, we tested a scenario
that anneals λ value from +0.75 t0 −0.75 for every
15 iterations and also tested the tuning optimization
algorithm without having real gap information included.
For the tuning optimization algorithm, when the real
gap information is not used, Step 3.3 of Algorithm 2
should be ignored. As significant improvement among
methods was shown for high dimensional functions, we
used one each of 6 and 10 dimensional functions to do
this comparison among different scenarios of our pro-
posed method and we limited the number of replications
to ten.

Our proposed Thompson sampling-based algorithm
adaptively optimizes the λ value using the knowledge of
previous iteration. Having the λ fixed, the constant value
that worked well for one response model might not work
for another response model. In general, -0.75 value for
λ consistently worked well for many problems. For the
response models shown in the Figure 10, although fixed
-0.75 and -0.5 lambda values have provided competitive
performance, it can be seen that their performance is
not as consistent as the proposed strategy (Thompson
sampling with gap information). From all the response
models provided in the Figure 10, we can see that our
proposed method learns and beats other scenarios using
around 20 iterations. Comparing with the scenario of not
including the real gap information, it can be seen that
including the gap information provides similar or does
improve the performance of the functions. Additionally,
including the gap information does not degrade the
performance for at least the response models tested.
Comparing with the scenario of annealing the λ, it can

be seen that the proposed strategy (Thompson sampling
with gap information) significantly performed better as
the former does not have the ability to adaptively change
based on the updated surrogate model and knowledge of
real gap information.

FIGURE 10: The comparison of different scenarios for
selecting the tuning parameter over a 6 dimensional
(6.1) and a 10 dimensional (10.1) functions based on
10 replicates.

B. ANALYSIS OF THE PATTERNS OF THE TUNING
PARAMETER VALUES OVER ITERATIONS
Figure 11 plots the selected values of the tuning param-
eter λ of the proposed BREI method as a function of
additional points (1,2,. . . ,100) for four different repli-
cates of the case study. As shown in the figure, while
for some replicates the λ values show some level of
consistency or convergence, in general, the plot looks
wiggly. This may be due to selecting the λ values based
on a stochastic policy using the expected reward of each
arm. The patterns of λ value for the simulated functions
also show the same behavior.
Figure 12 complements the results with the boxplot of

the λ values as function of additional evaluation points
over the 100 replicates for the 6.1 (6D: left plot) and
10.1 (10D: righ plot) functions in the simulation study.
As shown in the Figure 12 , the boxplots do not show
any meaningful pattern or consistency/convergence for
the λ values. The boxplots of the case study and other
simulated functions also show the same behaviour.

FIGURE 11: The selected values of the tuning parameter
λ as a function of iteration for four different replicates
of the case study.
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FIGURE 12: Boxplot of the selected lambda values as a
function of iteration (additional evaluation points) over
the 100 replicates for the 6.1 (left) and 10.1 (right)
functions in the simulation study. The plots include the
1st and 3rd quartiles, mean, median and mode.

C. ADDITIONAL PERFORMANCE PLOTS OF THE
COMPARING METHODS FOR THE CASE STUDY AND
SIMULATED EXPERIMENTS
Figures 13 and 14 illustrate the median, first quartile
(Q1), and third (Q3) quartiles trend of the observed
responses of the comparing methods over the 100 repli-
cates at the initial set of points as well as the 100
additional points for the case study and the simulated
experiments.

D. COMPUTATIONAL TIME
Figure 15 shows the computational time taken (in sec-
onds) for 2, 3, 6 and 10 dimensional response models
used in this study. For the plotting purposes, we took
2.1, 3.1, 6.1 and 10.1 response models. For lower dimen-
sion models, the computational time taken by BREI is
similar as EI but as the dimension increased the time
taken is increased as well which might be due to the
increase in the size of Z used to fit the surrogate model
in Algorithm 2. From our analysis, out of all comparing
methods, KG requires highest computational time.

E. COMPARISON AMONG EI, REGULARIZED EI WITH
CLASSIC STANDARD DEVIATION, AND THE
PROPOSED BREI
Figure 16 illustrates the mean performance of EI, BREI
with classic standard deviation (BREI Original) and the
proposed BREI for higher dimension functions i.e. 6.1,
6.2, 10.1 and 10.2. BREI Original uses REIOriginal =
E(Ix) + λσ(Ix), while BREI uses Equation 6 to select
the next test point. As seen in Figure 16, although BREI
original provides superior performance compared to EI,
the proposed BREI acquisition function with σ∗(Ix)
provides consistent best performance.
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