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ABSTRACT
To walk over constrained environments, bipedal robots must

meet concise control objectives of speed and foot placement. The
decisions made at the current step need to factor in their effects
over a time horizon. Such step-to-step control is formulated as a
two-point boundary value problem (2-BVP). As the dimension-
ality of the biped increases, it becomes increasingly difficult to
solve this 2-BVP in real-time. The common method to use a
simple linearized model for real-time planning followed by map-
ping on the high dimensional model cannot capture the nonlin-
earities and leads to potentially poor performance for fast walk-
ing speeds. In this paper, we present a framework for real-time
control based on using partial feedback linearization (PFL) for
model reduction, followed by a data-driven approach to find a
quadratic polynomial model for the 2-BVP. This simple step-to-
step model along with constraints is then used to formulate and
solve a quadratically constrained quadratic program to generate
real-time control commands. We demonstrate the efficacy of the
approach in simulation on a 5-link biped following a reference
velocity profile and on a terrain with ditches. A video is here:
https://youtu.be/-UL-wkv4XF8

1 Introduction
Bipedal walking systems because of their human-like mor-

phology are perhaps more suitable for integration in human en-
vironments such as homes and warehouses. However, bipeds are
yet to achieve the dexterity and nimbleness seen in human move-

ments. Controlling bipedal systems is a formidable challenge
because of their unstable inverted pendulum-like nature that is
instantaneously uncontrollable because of lack of adequate ac-
tuation at the base of the feet (also known as under-actuation).
For example, when a standing robot is pushed, it cannot stabi-
lize itself in the vertical position, but needs to take a step forward
to balance. These issues are further compounded by their high
dimensionality (∼ 20 degrees of freedom for a 3D biped).

Inspired from humans, the most successful control paradigm
is to achieve balance and control over the time scale of a step,
also known as step-to-step control [2]. A fundamental challenge
with step-to-step control is that it is predictive: it needs to make
instantaneous control decisions that affect the dynamics over the
time scale of a step or the step-to-step dynamics. Thus, step-to-
step control entails solving a suitable two-point boundary value
problem (2-BVP). As the dimensionality of the biped increases,
it becomes computationally challenging to solve this 2-BVP in
real-time. Past control approaches have either used offline de-
sign with complete models [3] or used online design with simple
models, which are mapped to the complete model all in real-
time [4]. The former approach is not generalizable to novel sce-
narios while the latter is conservative because the simple models
do not capture the complete dynamics. In this paper, we present
an approach that enables fast computation of controllers using a
complete model to enable real-time control. Our key idea is to
use PFL to transform the complete model to low dimension, of-
fline approximation of the 2-BVP using a quadratic polynomial
model, and finally, online optimal control using this model.
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FIGURE 1. Overview of the approach: (a) PFL reduces the stance phase dynamics from Θ = [Θu,Θc] (10 dimensions) to Θ = Θu (2 dimensions).
(b) A Poincaré section is chosen at mid-stance. We generate random input state at the Poincaré section and controls at the step and simulate till the next
Poincaré section to generate data for the Poincaré map given by F, Θi+1

u = F(Θi
u,Ui). (c) The Poincaré map is curve fitted Θi+1

u = F(Θi
u,Ui) where F

is a quadratic polynomial model and support vector machine is used to identify the boundary of the model. (d) Nonlinear programming is used to solve
a suitably formulated quadratically constrained quadratic program. For a video see [1].

2 Background and Related Work
One of the earliest demonstration of step-to-step control was

through the concept of passive dynamic walking (PDW) [5]. In
PDW, a walking frame resembling the human lower body settles
into a cyclic or periodic gait when launched on a shallow slope
with no external control. This idea has given rise to powered
walkers that exhibit cyclic walking on level ground using hip and
ankle actuation. Some example robots include the Cornell biped
[6], Cornell Ranger [7], Delft bipedal robots [8], Michigan State
synthetic wheel biped [9], and Twente Dribbel [10]. One feature
of these robots is that when executing cyclic walking, they are
unstable instantaneously, but are stable over the time scale of a
step [11]. This cyclic stability is known as orbital stability and is
a primary means of balance in humans [12].

We analyze cyclic gaits and their orbital stability using con-
cepts from non-linear dynamics [13]. First, we find the nominal
rhythmic control that achieves cyclic or periodic gait [14]. Then
we use the linearization of the cyclic gait to evaluate the orbital
stability. To increase the orbital stability of the system, we create
a linear model of the step-to-step dynamics and then we choose a
suitable linear controller using either pole placement or discrete
linear quadratic regulator [15, 16]. This approach is computa-
tionally simple as it is based on a linear controller, but it limits
the region of stability to a narrow region around the cyclic gait.

One way to enable stability against large perturbation is to
compute controllers (e.g., using nonlinear optimization) based on
the non-linear model. This approach works well for offline con-
troller development, as the control development requires heavy
computation and takes quite some time to converge to the opti-
mum. An alternate approach is to use a simple model (e.g., linear
inverted pendulum) to plan the motion over a low-dimensional

space, typically the center-of-mass motion and foothold loca-
tion, and then use inverse kinematics and inverse dynamics to
map to the non-linear model [4,17]. One caveat of this approach
is that the results depend on the accuracy of the simple models.
These simple models ignore the nonlinearities and/or the angu-
lar momentum of the upper body and have issues when planning
for high speed location and/or those involving upper body move-
ment.

The hybrid zero dynamics (HZD) approach does controller
synthesis using a high-dimensional model [18,19]. Here one de-
fines continuous-time outputs (also known as virtual constraints)
that map the actuated degrees of freedom to the unactuated de-
grees of freedom. One then designs a controller to drive these
outputs to zero. This method is attractive because it uses control
to reduce the dimensionality of the system to the unactuated de-
grees of freedom and is hence scalable. However, it is not very
easy to find these virtual constraints that lead to acceptable per-
formance as the system complexity increases [20]. Although one
can create exponentially stable continuous time controllers, the
orbital stability is only asymptotically stable [21].

We present an overview of our approach and demonstrate it
on a 5-link biped. As shown in Fig. 1 (a), we use PFL to reduce
the dimension from 10D to 2D. Next, as shown in Fig. 1 (b),
we use a Poincaré map for modeling the step-to-step dynamics
which further reduces the system dimension to 1D, the velocity
of the stance leg. We note that the step-to-step dynamics has 1
state variable, the mid-stance speed, and 2 control variables, the
push-off impulse and the step angle. Next, as shown in Fig. 1
(c), we approximate the step-to-step dynamics using a quadratic
polynomial model and estimate its region of validity using sup-
port vector machine (SVM). Finally, as shown in Fig. 1 (d), we
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FIGURE 2. Humanoid model: (a) configuration variables describing
the degrees of freedom, (b) mass, center of mass, inertia about center of
mass, and length parameters

use nonlinear programming to solve the resulting quadratically
constrained quadratic program. For a video see [1]. The nov-
elty of our work in comparison to past approaches (e.g., [22]) is
the use of data-driven methods to derive a quadratic polynomial
model of the 2-BVP and identify the region of validity. Unlike
past approaches that are based on linearization, our simple model
covers a relatively extensive region around the cyclic gait and
enables us to solve the 2-BVP in few iterations/function evalua-
tions enabling real-time control in the future. This work builds
upon our past work on control of a humanoid [23] by improv-
ing the step-to-step model approximation to compute the region
of validity using SVM and subsequently we demonstrate that the
resulting quadratic program can be solved in few iterations.

3 Robot model
Figure 2 shows the 2D, 5-link model used in this study. This

model was previously used in our past work [23] from which this
study builds from. We define the stance leg as the one in contact
with the ground and the swing leg is the other leg. The foot in
contact with the ground has coordinates (x,y) where the x-axis is
horizontal and y-axis is vertical. The torso angle θ0 is the angle
between the torso and the vertical direction, θ1 and θ2 are the
relative angles made by the thigh links of the stance and swing
leg respectively with the torso, and θ3 and θ4 are the angles made
by the calf links of the stance and swing leg respectively with
their respective thigh links. The torso mass is m0 = 50 kg, center
of mass is at c0 = 0.5 m, and inertia about the center of mass is
J0 = 10 kg-m2. The thigh links have a mass of m1 = 7 kg, center
of mass is at c1 = 0.25 m, and inertia about the center of mass is

J1 = 5 kg-m2. The calf links have a mass of m2 = 5 kg, center
of mass at c2 = 0.25 m, and inertia about the center of mass is
J2 = 2 kg-m2. Gravity points downwards and is g = 9.81 m/s2.
The torso length `0 = 1 m the thigh link and calf link lengths are
equal, `1 = `2 = 0.5.

There are two sets of equations: one for the single stance
phase where one foot is on the ground and the second for the
foot-strike where the legs exchange roles.

3.1 Single stance equations
The state variables for derivation are defined as q =[

x y θ0 θ1 θ2 θ3 θ4
]T . We include the floating coordinates x and

y to derive the equation, but the simplified equation has only
5 variables, θ0, θ1, ... θ4. The Lagrangian L = T − V =

0.5∑

(
mivT

i vi + Jiω
T
i ωi

)
−∑

(
migyi

)
where vi, ωi, yi are the

linear velocity, angular velocity, and y-position center of mass of
link i respectively. We take the summation over all the 5 links.
Using the Euler-Lagrange equations gives 7 equations

M(q)q̈+N(q, q̇) = Bu+JC1PC1 (1)

where M, N, B are the mass matrix, accelerations due to Coriolis,
centrifugal acceleration and gravity, and torque selection matri-
ces. The control torques are u =

[
τ1 τ2 τ3 τ4

]T where τi is the
torque for joint with stance calf link θi, JC1 is the Jacobian of
the contact point C1 and PC1 is the ground reaction force on the
stance leg.

Without loss of generality, we can assume x = y = 0. Also,
since C1 is at rest, ẋ = ẏ = ẍ = ÿ = 0. Using these conditions, we
use the first two equations in Eqn. 1 to find the ground reaction
forces PC1 as a function of joint angles, velocities, and accelera-
tion. We may write the remaining 5 equations as

Mθ (θ)θ̈ +Nθ (θ , θ̇) = Bθ u (2)

where Mθ , Nθ , Bθ are appropriately versions of the matrices
defined earlier. We use this equation for simulating single stance
phase and for controller development later.

3.2 Foot-strike equations
When the swing foot C2 touches the ground, the sin-

gle stance phase ends and the robot transitions to an in-
stantaneous foot-strike phase. We assume that the trailing
leg applies an impulsive force along the stance leg, IC1 =

I
[
−sin(θ0 +θ1 +θ3), cos(θ0 +θ1 +θ3)

]T where I is the scalar
impulse. This force comes from the ankle motor at C1 which
is passive during the stance phase, except during the foot-strike
phase. Our choice of impulsive push-off is to be able to achieve
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energy-efficient walking compared to hip actuation (see [24]). In
this phase, angular momentum is conserved about new contact
point C2. We obtain the equations for this phase by integrating
Eqn 1 and taking the limit as time goes to 0

[
M(q−) −JT

C2
JC2 0

][
q̇+

IC2

]
=

[
M(q−)q̇−+JT

C1
IC1

0

]
(3)

where the superscript − and + denote the instance before and
after collision respectively.

3.3 Simulating a single step
Figure 3 shows the general equation that describes a single

step, the repeating unit, that starts and ends at mid-stance. We
now explain the composition of a single step. We start the step
at mid-stance when stance leg thigh link is vertical, θ0 +θ1 = 0.
Next, we use the single stance Eqn. 2 to integrate the system
till foot-strike. The foot strike occurs when the swing foot C2
touches the ground, yC2 = `1 cos(θ0 + θ1)− `1 cos(θ0 + θ2) +
`2 cos(θ0 + θ1 + θ3)− `2 cos(θ0 + θ2 + θ4) = 0. Next, we ap-
ply the foot-strike condition given by Eqn. 3. Then we swap the
legs, θ

+
0 = θ

−
0 , θ

+
1 = θ

−
2 , θ

+
2 = θ

−
1 , θ

+
3 = θ

−
4 , θ

+
4 = θ

−
3 . Sim-

ilarly, for the angular velocities we have θ̇
+
0 = θ̇

−
0 , θ̇

+
1 = θ̇

−
2 ,

θ̇
+
2 = θ̇

−
1 , θ̇

+
3 = θ̇

−
4 , θ̇

+
4 = θ̇

−
3 . Finally, we integrate the equa-

tions in single stance given by Eqn. 2 till the next mid-stance
given by θ0 +θ1 = 0.

4 Methods
4.1 Partial feedback linearization

We use PFL to control the actuated degrees of freedom in
the stance phase as described next. We invert the mass matrix
from Eqn. 2 to get

θ̈ = M−1
θ
(θ)(Bθ u−Nθ (θ , θ̇)) (4)

The system has 5 degrees of freedom, but only 4 actuators. We
use PFL to decouple the 4 degrees of freedom, namely the torso
θ0, the swing leg joints θ2 and θ4, and the stance leg knee θ3.
Thus, if θc =

[
θ0 θ2 θ3 θ4

]
. Then, we can find a matrix Sc by

inspection such that θc = Scθ where θ =
[
θ0 θ1 θ2 θ3 θ4

]
. We

write

θ̈c = Scθ̈ = ScM−1
θ
(θ)(Bθ u−Nθ (θ , θ̇)) = v (5)

where v is the new control input chosen as

v = θ̈
re f
c +Kd(θ̇

re f
c − θ̇c)+Kp(θ

re f
c −θc) (6)

where θ
re f
c , θ̇

re f
c , θ̈

re f
c are the user specified reference posi-

tion, velocity, and acceleration. We assume a fifth order poly-
nomial for θ

re f
c such that the position, velocity, and accelera-

tion at the start and end are specified, many of which are set
to 0. The gains Kp and Kd are diagonal matrices. We choose
Kp = Kp diag{1,1,1,1} and Kd = 2

√
Kp diag{1,1,1,1} to en-

sure critical damping. The motor torques are

u = (ScM−1
θ
(θ)Bθ )

−1(v+ScM−1
θ
(θ)(Nθ (θ , θ̇)) (7)

The uncontrolled degree of freedom is θu = Suθ where θu = θ1.
We can write an equation for this degree of freedom after suitably
including the control input from the above equation

θ̈u = Suθ̈ = SuM−1
θ
(θ)(Bθ u−Nθ (θ , θ̇)) (8)

We need to integrate this equation in the single stance phase.

4.2 Step-to-step dynamics: Poincaré map
We now introduce the idea of Poincaré section and map

(see [13] for more details). The Poincaré section is a 2N − 1
(where N is the total degrees of freedom of the system) dimen-
sional surface denoting an instance in the locomotion cycle (e.g.,
mid-stance, foot-strike) as shown in blue dots in Fig. 1 (b). The
Poincaré map is a function F that maps an initial state at the
Poincaré section Θi and controls during the step Ui to the state at
the Poincaré section at the next step Θi+1. This map F describes
the step-to-step dynamics and is found by integrating equations
from Poincaré section to the next as shown in Fig. 3. Thus, we
can write

Θ
i+1 = F(Θi,Ui) (9)

where i is the step number; Θ =
[
θ θ̇
]

is the state, where
θ =

[
θ0 θ1 θ2 θ3 θ4 θ5

]
, U are the discrete controls that are set

once per step (e.g., foot placement angle, impulsive push-off),
and F is the Poincaré map that relates the state from one mid-
stance to the next one. For most systems, it is not possible to
find an analytical formula for the Poincaré map. It is obtained
by numerically integrating the equations of motion and/or apply-
ing the algebraic conditions for instantaneous phases (e.g., foot-
strike). Note that we define the mid-stance as θ0 +θ1 = 0. For a
10 degree of freedom system, the Poincaré map is 9 dimensional.

We can simplify Eqn. 9 as follows. Assuming that the PFL
works as intended, the step-to-step dynamics depends only on the
uncontrolled degrees of freedom, Θ =

[
θu θ̇u

]
(Note, we show

this in the results section). Thus, for the 5-link biped, we have
θu = θ1. But, since the Poincaré map is at the mid-stance, there

4 Copyright c© 2021 by ASME



FIGURE 3. Pictorial representation of a single step

is only one degree of freedom, θ̇1. We choose two controls to be
the step angle at foot-strike θ2 = α and the push-off impulse I at
footstrike. Thus, we write

m
θ̇

i+1
1 = F(m

θ̇
i
1,α

i, Ii) (10)

where mθ̇1 is the mid-stance speed of θ1. Also, note that F is a
scalar.

4.3 Approximating the Poincaré map
The Poincare map, Eqn. 10, reduces to a single equation.

One caveat is that it is not possible to find an analytical solution
to the step-to-step dynamics. Our goal is to find a simple approx-
imation F with m

A θ̇
i+1
1 being the approximated mid-stance speed

at step i+1

m
A θ̇

i+1
1 = F(m

θ̇
i
1,α

i, Ii) (11)

4.3.1 Data generation First, we prepare the simulator
to simulate a single step as shown in Fig. 3. The inputs are the
mid-stance speed mθ̇ i

1, the foot placement angle α i, and the push-
off impulse Ii and the output is the mid-stance speed at the next
step m

A θ̇
i+1
1 . For some inputs, the reaction would cause the model

to lose balance and fall before taking the next step (infeasible)
while for other inputs it would successfully reach the next step
(feasible). The resulting feasible/infeasible dataset is used to find
the boundary of the region using support vector classification and
the feasible dataset is used to find a quadratic polynomial model
for the 2-BVP. These are discussed next.

4.3.2 Estimating the boundary of the Poincaré
map A SVM classification model is used to estimate the
boundary of the Poincaré map. The SVM binary classification al-
gorithm from the MATLAB statistics and machine learning tool-
box with a linear kernel function is used to search for an optimal
hyperplane that splits the data into two classes. This allows filter-
ing of the feasible and infeasible data. We assume that the data
is linearly separable. We generate a training set of 1000 combi-
nations of θ̇1, α i and Ii to train the SVM classifier. We show the
decision boundary plane equation in Eqn. 12 where w0 and b0
are the coefficients of the hyperplane equation. In Eqn. 13 Ai

is the Lagrange multiplier obtained from the dual cost function
used in the SVM training, xi are the support vectors, yi is the clas-
sification of the support vectors (−1 or +1) and j is the number
of support vectors. Eqn 15 shows the SVM classifier equations.
We used a test set of 125 samples for testing.

m
θ̇

i
1 =
−b0−w0(1)α i−w0(2)Ii

w0(3)
(12)

w0 =
j

∑
i=1

Aiyixi (13)

b0 =
1
j

j

∑
i=1

(yi−w0 · x) (14)

h(xi) =

{
+1 (not feasible) if w · x+b≥ 0
−1 (feasible) if w · x+b < 0 (15)

4.3.3 Quadratic polynomial model of the Poincaré
map Once we developed the classification model, we used the
feasible samples to develop a polynomial regression model. Our
regression model is a quadratic polynomial with regression coef-
ficient denoted by β .

m
A θ̇

i+1
1 = β0 +β

m
1 θ̇

i
1 +β2α

i +β3Ii +β
m
4 θ̇

i
1α

i...

...+β
m
5 θ̇

i
1Ii +β6α

iIi +β7α
i
α

i +β8IiIi (16)

4.4 Quadratically constrained quadratic program

We formulated an optimization problem to find the inputs
that yield the approximated m

A θ̇
i+1
1 . The cost function is the

squared error of the outputs in relation to their nominal states:
Cost = (m

A θ̇
i+1
1 −m ¯̇

θ
i+1
1 )2 +(α i− ᾱ i)2 +(Ii− Īi)2 where m ¯̇

θ
i+1
1 ,

ᾱ i and Īi have the nominal values −0.97, 0.375, 0.18 respec-
tively. These nominal values were chosen to achieve walking at
human speed and step length. The constraints include Eqns. 12 -
16.

The problem can be rewritten as a quadratically constrained
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FIGURE 4. Feature space and optimal hyperplane of test set.

quadratic program as given below

minimize
y

0.5yT Hy+ fT y+ c (17)

subject to: 0.5yT Qiy+kT
i y+di = 0 (18)

pT y < b0 (19)
LB≤ y≤ UB (20)

where y =
[
Θi+1 Ui

]T , f, H and c are user chosen constants in
the cost function. Eq. 18 is the polynomial regression equation as
shown in Eq. 16 where m

A θ̇ i
1 is treated as a known constant. The

matrix Qi contains the second order terms, ki contains first order
terms and di contains the constants. Eq. 19 accounts for linear
inequality constraints and contains the SVM classifier constraint
from Eq. 15. LB and UB are the lower bound and upper bound
vectors set to be [-2.5, 0.087, 0.1] and [-0.5, 0.873, 0.4].

5 Results
5.1 SVM Classification

Fig 4 shows the feature space of the training set along with
the SVM classification optimal hyperplane where the red dots
are the feasible samples, and the blue are the infeasible samples.
We show the optimal hyperplane in purple which corresponds to
the decision boundary for the model. Fig 5 shows the confusion
matrix of the SVM model. Overall, the model has an accuracy
of 93.6%. As seen from the confusion matrix, the precision of
predicting feasible data (-1) is 86.2% and the precision for pre-
dicting nonfeasible data (+1) is 95.8%.
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13.8%

95.8%
4.2%
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6.4%

FIGURE 5. Classification confusion matrix

Estimate p-value

β0 1.587 <0.01

β1 0.910 <0.01

β2 -10.553 <0.01

β3 1.872 <0.01

β4 1.429 <0.01

β5 -2.874 <0.01

β6 -26.937 <0.01

β7 25.42 <0.01

β8 6.116 <0.01

TABLE 1. Regression coefficients

5.2 Quadratic polynomial regression
We show the estimated coefficients of the regression with

their respective p-values in table 1. The R-squared value and
adjusted R-squared value for the regression analysis was 0.975
for both. Considering 1 rad/sec to be nominal, 93.1% of the test
samples had an accuracy of 90% or better, and 100% of the sam-
ples had an accuracy of 80% or better. The mean accuracy of the
regression model was 95.61%.

5.3 Optimization: Following reference velocity
We tested the model and optimization framework’s ability to

follow a reference velocity profile θ̇
re f
1 . We chose a sinusoidal

pattern with an amplitude of 0.1 rad/sec for 20 steps with an off-
set equal to the nominal velocity of −0.97 rad/sec. The goal
of the optimization is to drive the velocity mθ̇

i+1
1 to the targeted

velocity θ̇
re f
1 . We modified the cost function such that m ¯̇

θ
i+1
1 =

θ̇
re f
1 . Fig. 6 shows the reference velocity and the actual veloc-

ity in simulation. Fig. 7 shows the behavior of the controls α i

and Ii as the velocity changes. We generate these controls from
the optimization problem using the quadratic polynomial model
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and are inputs to the actual model, Eqn. 10. The mean absolute
error was 0.0106 rad/sec. We calculated this by subtracting the
reference velocity from the actual at every step and taking the
mean. These optimizations took about 15 to 40 function evalua-
tions demonstrating the feasibility for real-time control.

5.4 Optimization: Terrain with ditches
We tested the model and optimization framework’s ability to

plan motion on a terrain with ditches. The swing foot touchdown
relative to the stance foot is 2(`1 + `2)sin0.5α i ∼ (`1 + `2)α

i.
Thus, swing foot touchdown is a linear constraint that preserves
the quadratic form. One issue with this formulation is that we
need to solve multiple quadratic programs for the foot step plan-
ning one for each feasible foot step location encompassed with
ditches on either side. Here the choice of the ditches was such
that we only needed to solve two quadratic programs, one for
stepping before the ditch and one after the ditch.

After solving both problems, we chose the solution with the
lowest cost. Fig. 9 shows the velocities mθ̇

i+1
1 and m

A θ̇
i+1
1 for

every step. m
A θ̇

i+1
1 obtained from the optimization solution and

the mθ̇
i+1
1 is obtained from the simulator, Eqn 10. In the opti-

mization problem the first mθ̇ i
1 input value is the nominal and for

every other step the input value is the velocity mθ̇
i+1
1 obtained

from the Poincaré map in the previous step. The mean abso-
lute error was 0.0077 rad/sec and was calculated by subtracting
mθ̇

i+1
1 from m

A θ̇
i+1
1 and taking the mean. The largest absolute er-

ror was 0.0251 rad/sec. Fig. 10 shows the controller deviations
from their nominal values. The humanoid from the simulation
shown in Fig. 8 successfully walked over four ditches without
falling. It is clear that the humanoid varies the length of its steps
to properly step over the ditches. To walk over the third ditch,
two steps were taken. Conversely, to walk over the fourth ditch
one long step was enough. The control α was bounded by the
boundaries from the training set of the regression model (0.34-
0.873 radians). This limited the humanoids ability to take shorter
or longer step when necessary. In these simulations, the nonlin-
ear optimization needed 6 to 130 functions evaluations, again
quite low demonstrating the feasibility for real-time control. A
simulation video is shown in the reference [1].

6 Discussion
Through numerical simulation on a 5-link biped with 10

dimensional state space, we have successfully shown that PFL
reduces this to 2 dimensional state space. Furthermore, the
Poincaré section reduces this to only a single dimension. Then
using data-driven approach first by using extensive simulation
for data generation and second by curve fitting using SVM and
polynomial regression, we demonstrate a highly accurate approx-
imation of the 2-BVP. This resulted in the formulation and so-
lution of a suitable quadratically constrained quadratic program
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FIGURE 6. Sinusoidal velocity tracking performance
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FIGURE 7. Sinusoidal velocity tracking control inputs

FIGURE 8. Simulation of humanoid walking over four ditches.
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FIGURE 9. Velocity before and after every step for planning on
ditches
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FIGURE 10. Controls at every step for planning on ditches

that achieves high accuracy and quick solution time.
PFL like the HZD formulation is a model reduction frame-

work. However, HZD requires choosing state based output func-
tions which can be non-intuitive and leads to a time invariant con-
trol formulation which does not need an external clock. PFL en-
ables specifying the joint angles/velocity independently of each
other, which is more intuitive and leads to a time dependent con-
trol formulation and hence needs an external clock for synchro-
nization. Another difference between the two approaches is that

7 Copyright c© 2021 by ASME



HZD is used for local stability or stability in the current step,
while in our formulation the PFL with Poincaré map is used for
orbital stability or stability in both the current and the future step.

Past approaches for orbital stabilization of legged robots
have considered linearized control around the period walking cy-
cle for control, which limits the approach to small disturbances.
In contrast, we use data from a relatively large region near the
periodic gait for fitting the Poincaré map. This enables the con-
troller to stabilize a relatively wider range of initial conditions.
These quadratic approximations of the model and linear approx-
imation of the boundary enables us to formulate a relatively sim-
ple quadratically constrained quadratic program that is solved in
less than 60 function evaluations, which is promising for real-
time control.

The accuracy from the SVM classification model is good
enough for our planar humanoid model, but a higher accuracy
may be needed for more complex 3D models. Several ways to
improve the model are discussed next. The SVM used in this
method uses a hard margin and works well with linearly separa-
ble data. Using a soft margin SVM might improve the model by
considering nonlinearity. One method of increasing the feasible-
predicting precision is by increasing the SVM margin such that
the probability of predicting +1 when it is -1 is low. In our ap-
proach, the quadratic polynomial regression was used to prevent
over-fitting the data. However, a higher order polynomial regres-
sion may provide a better fit, but with possibly increased com-
putational time. In addition, using a neural network may yield
a similar or better fit. The use of a neural network was shown
in [23] to be a more stable control model than a quadratic control
model. Future work will investigate the use of neural networks to
approximate the Poincaré map. Finally, we limited our planning
horizon to a single step look-ahead. However, planning over mul-
tiple steps is more desirable for more complex terrain, and this
may lead to a combinatorial explosion that would need suitable
heuristics to solve quickly.

7 Conclusions and Future Work
This paper presented a fast method of computing controllers

using a model that enables real-time control of a 5-link planar
bipedal robot. PFL was used to transform the complete model
to low dimension. Data was generated for Poincaré map. SVM
was utilized to obtain a decision hyperplane which separates fea-
sible and infeasible datapoins. A quadratic polynomial regres-
sion was used to approximate the Poincaré map leading to a
closed form expression for the 2-BVP. Finally, a quadratically
constrained quadratic program was formulated and solved. The
results demonstrated that the approach was able to follow a ref-
erence velocity profile and plan over a terrain with ditches with
high accuracy in relatively short amount of time (< 130 function
evaluations). To conclude, the approach presented in this paper
provides a computationally efficient method of achieving precise

control for complex bipedal robots. This work may ultimately
be used to not only control bipedal robots but also lower limb
exoskeletons and prosthesis. The evaluation of this approach on
a humanoid platform will be performed in future studies. Such
platform will be a 3D extension of this work where the humanoid
will exhibit 3 uncontrolled degrees of freedom in a 6 dimensional
state space with a 6-1 dimension of the Poincaré section.
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