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Abstract: For artificial legs that are used in legged robots, exoskeletons, and prostheses, it suffices
to achieve velocity regulation at a few key instants of swing rather than tight trajectory tracking.
Here, we advertise an event-based, intermittent, discrete controller to enable set-point regulation
for problems that are traditionally posed as trajectory following. We measure the system state at
prior-chosen instants known as events (e.g., vertically downward position), and we turn on the
controller intermittently based on the regulation errors at the set point. The controller is truly discrete,
as these measurements and controls occur at the time scale of the system to be controlled. To enable
set-point regulation in the presence of uncertainty, we use the errors to tune the model parameters.
We demonstrate the method in the velocity control of an artificial leg, a simple pendulum, with up to
50% mass uncertainty. Starting with a 100% regulation error, we achieve velocity regulation of up to
10% in about five swings with only one measurement per swing.

Keywords: event-based control; adaptive control; intermittent control; discrete control; pendulum
swing; artificial legs

1. Introduction

For legged robots, powered prosthetics, and powered exoskeletons to be successful,
one needs appropriate swing-leg control in the presence of model uncertainty (e.g., un-
certainty in inertia and damping). This is typically achieved by setting up a reference
trajectory for the swing leg and then using a high-gain feedback controller to track the
reference trajectory. However, it is worth noting that it is sufficient for the swing leg to
achieve a set velocity at a given instant of the swing instead of tracking a series of reference
points at multiple points in the swing. In this paper, we achieve swing-leg control by
tracking a set point, the velocity at a chosen instant, instead of a reference trajectory. This
alternate formulation is simpler because it requires a few measurements (typically one or
two per step), few computations (offline design of feedback gain), and low-bandwidth
control (typically of the order of 1 or 2 Hz). We call such a control event-based, intermittent,
discrete control.

Another challenge, especially with powered prosthetics and exoskeletons, is that the
parameters of the control need to be tuned for a specific individual based on the dynamics
of their able leg. Although a high-gain-tracking controller may achieve desired outcomes,
it might amplify the sensor noise, leading to instability. Alternately, careful tuning of the
feedback gains may achieve acceptable performance, but such hand-tuning is potentially
time consuming. A more customizable method is to have an adaptive controller that self-
tunes itself using on-board measurements. In this paper, we further develop an adaptive
control layer to enable automatic tuning of the discrete controller.

We present an event-based, intermittent, discrete adaptive controller for controlling
systems using low-bandwidth measurements and control while achieving an appropriate
performance index. We demonstrate results on the benchmark problem of swinging of a

Actuators 2021, 10, 264. https://doi.org/10.3390/act10100264 https://www.mdpi.com/journal/actuators

https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0002-7504-6009
https://doi.org/10.3390/act10100264
https://doi.org/10.3390/act10100264
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/act10100264
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act10100264?type=check_update&version=1


Actuators 2021, 10, 264 2 of 14

pendulum in a simulation and experiments. In the future, we expect to apply the control
method on a legged robot and a hip exoskeleton.

2. Background and Related Work

One of the earliest hypotheses was that the human leg swing is ballistic, i.e., there is no
active control during the leg swing [1,2]. However, later works found that a pure ballistic
swing underestimated the swing time and step length and did not accurately predict the
ground reaction forces [3]. Later works found that the swing leg is not totally passive, as it
entails a metabolic cost and there is muscle activity for initiation and propagation of the
swing leg [4].

Active control of exoskeletons and prostheses relies on tracking a reference motion
using a high-gain feedback controller [5] or just loose tracking of a set of reference points
in the swing [6]. In the latter approach, one divides the swing phase into a series of phases.
In each phase, there are set points that are loosely tracked using a low-gain proportional–
derivative controller. A more extreme approach is to tune a controller once per step by
using measurements obtained during the step. For example, by modulating the ankle
push-off based on the average progression speed, it is possible to achieve balance control [7].
Instead of actively injecting energy, there are artificial devices that extract energy using
magneto-rheological dampers to achieve swing control [8].

The ballistic swing model of humans inspired passive dynamic walking robots. Such
robots can walk downhill with no external torque input or power, relying solely on the mass,
inertia, and geometry of their legs [9]. However, such robots can only walk on shallow
slopes, limiting them to slow speeds and short step lengths [10]. Increasing the slope
increases the walking speed, but requires active control of the hip joint [11]. Alternately,
to enable walking at human speed on level grounds, one needs to tune the leg frequency
using either active control or a hip spring and an ankle push-off to overcome energy losses
during the foot strike [12,13].

Similarly to that of exoskeletons and prostheses, the control of legged robots ranges
from tight trajectory tracking to once-per-step control. The most prominent idea has been
the hybrid zero-dynamics approach in which one defines a set of canonical output functions
using heuristics [14], optimization [15], or human data [16]. These outputs can be tracked
using a high-gain feedback controller. An alternate approach is loosely tracking distinct
set points during the gait cycle using a low-gain feedback control so that the tracking is
approximate [17]. A more extreme approach, the once-per-step control, is the modulation
of a single control parameter (e.g., ankle push-off) during the gait cycle [18]. For hopping
robots, it has been shown that control of the hop height, the forward speed, and the torso
using three independent controllers can achieve highly robust running for one-, two-,
and four-legged robots [19].

Adaptive control of artificial legs is achieved with tight trajectory tracking using a
model reference adaptive control that tunes the controller based on tracking errors [20] or
a model identification adaptive control in which the model is taught from the errors [21].
Other approaches have considered optimal control using dynamic programming [22],
extremum-seeking control [23], and reinforcement-learning-based approaches [24].

The concept of tracking set points instead of trajectory tracking has similarities with
past work done on controlling lightly damped systems, such as point-to-point movement
of a crane using a hoist. One such application is the point-to-point movement of cranes
using a cable hoist, where improper movement of the crane leads to unnecessary vibration
of the payload at the end of the movement [25]. One method is the ‘posicast’ method, in
which the input command is delayed in such a way that it causes vibration produced by
the pre-delay input signal [26,27]. Another method is called ‘input shaping’ or command
shaping, in which two impulses that are separated in time are convolved with the input
command. The timing of the impulse is so chosen that the vibration induced by the first one
is exactly cancelled by the second one, leading to cancellation of the vibration [28,29]. Both
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methods—the posicast and the input shaping method—tune the feedforward command to
achieve vibration suppression.

The method proposed in this paper is closest to ‘intermittent control’ [30]. Here,
the control is made up of the multiplication of a time-based part and a basis function.
The time-based part is optimized for the steady-state response or feedforward response,
while the basis function is tuned based on measurement errors. The control is intermittent
because the basis function is not continuously tuned, but only based on errors at events in
the control cycle. Intermittent control has been used for inverted pendulum control [31]
and to explain humans balancing a stick on their hands [32], as well as human standing
balance [33].

In this paper, we present the event-based, intermittent, discrete adaptive controller
design. Here, we measure the system state during events in the motion (e.g., vertically
downward position for a pendulum swing). Based on these measurements, we compute
control parameters that turn the control ON intermittently (e.g., torque is ON for a few
milliseconds during the pendulum swing). The controller is discrete in the sense that the
time intervals between measurements are typical of the order of the natural frequency of
the system. Then, we add an adaptive controller that tunes the control parameters using
sensor measurements. This paper extends our event-based, intermittent, discrete controller
design, which is similar to the intermittent control approach [34], to adaptive control, and
this is the main novelty of the paper.

The flow of the paper is as follows. We present the methods for event-based, in-
termittent control and then extend them to perform adaptive control in Section 3. Next,
we present results on simulations and hardware in Section 4. The discussion follows in
Section 5, and this is followed by the conclusion in Section 6.

3. Methods
3.1. Overview of Control

Figure 1 summarizes the control idea. We show the nominal motion of the system
using a black dashed line. This corresponds to the use of the nominal control parameter
U0. Since we are specifically looking at periodic motion, the performance variable z, which
is a function of the state, is z0 at the instant k and k + 1. When the system deviates from
the nominal, the state at section k is z. Now, we have to find the correction to the nominal
control parameter δU such that the new control parameter U0 + δU brings the performance
variable close to z0 at the event k + 1.
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Figure 1. Key idea behind event-based discrete control: The nominal value of the performance
variable z0 is tracked at event k and k + 1 spread over time. The nominal values for the control
parameters are U0. When the system is perturbed, the performance variable for the perturbation is
zk = z 6= z0. Our goal is to use the measurement at k, z− z0 to find the correction in control U0 + δU
such that at the event k + 1, the performance variable z(k + 1) = z0. Note that the time between
events k + 1 and k is typically of the order of the time scale of the system.

There are few things in the controller that differ from traditional feedback control.
First, the time interval between the events k and k + 1 is typically at the order of the natural
time constant of the system and not at the bandwidth provided by the computing and
hardware of the system. Second, we take measurements of the system z and make control
corrections δU at key instances, again at the order of the natural frequency of the system.
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Finally, the controller regulates the system to the performance index—here, z = z0—at key
instants instead of tight trajectory tracking. We now describe the specifics of the controller.

3.2. Event-Based, Intermittent, Discrete Control

Let the state of the system be x(t), the control be u(t), and the continuous system
dynamics be defined by F with ẋ = F(x, u). Let the control be parameterized by the
free variable U (e.g., gain, amplitude, set point) such that u(t) = f (t, x, U), where f is a
function of state, time, or a combination of both. Assume that there is a nominal control
u0(t) = f (x, t, U0) that leads to some nominal motion for the states x0(t).

In the problems considered in this paper, we are not interested in tight tracking of
the reference trajectory x0(t). Rather, we want to track a suitable performance variable
z(x) (e.g., energy, cartesian position, joint angle) at some state-based or time-based event
(e.g., t = constant, g(x) = constant, where g is some nonlinear function) such that z = z0
at some instant. The overall outlook of the event-based control paradigm is as follows.
We measure the system state at some state-based or time-based event. Let us assume that
the state has deviated from its nominal value, δx = (x − x0). The goal then is to find
the differential control parameters δU = U −U0 such that we minimize the deviation
δz = (z− z0). The control is intermittent, as we set the free parameter at the events using
the measurement and regulation error.

We can linearize the system at the nominal value of the performance index z between
the events k and k + 1 to get

δz(k + 1) = aδz(k) + bδU(k) (1)

where z ∈ R and U ∈ R. since the goal is to reduce δz = z− z0 = 0. We achieve this in
a single measurement and control cycle by choosing δU(k) = − a

b δz(k), assuming b 6= 0.
Such a control that achieves full correction of disturbances in a single step is known as a
one-step deadbeat controller (e.g., see [35], p. 201).

3.3. Adaptive Control

In the previous section, we showed how to choose a control if the model F of the
system is fully known. However, there may be modeling errors; as such, we may only know
an imperfect model ẋ = F̂(x, u). In this case, our estimates for the linearized parameters
are â and b̂. Thus, we will have an error

e(k) = δz(k + 1)− âδz(k)− b̂δU(k)

= δz(k + 1)− XT(k)ŵ (2)

where ŵ =
[
â, b̂

]T are weights and X(k) =
[
δz(k), δU(k)

]T is the regressor. We now
define a cost function

J(ŵ(k)) =
1
2

e2(k)
n2(k)

(3)

where n =
√

ε + XT(k)X(k) is the normalizing factor with a user-chosen small positive
constant, ε > 0.

The update in the weight ŵ can now be obtained by gradient descent:

ŵ(k + 1) = ŵ(k)− λ
∂J

∂ŵ(k)

= ŵ(k)− λ
∂J

∂e(k)
∂e(k)
∂ŵ(k)

= ŵ(k) + λ
e(k)

n2(k)
X(k) (4)
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where 0 < λ < 2 is a user-tuned gain. This can also be a function of iteration, i.e., λ(k). It
can be shown that the adaptive law above guarantees that the weights ŵ and error e are
bounded and limt→∞e = 0 (e.g., see [36], Chapter 3).

3.4. Control of a Pendulum

We demonstrate the event-based, intermittent, discrete adaptive control for velocity
control of a pendulum. First, we describe the model in continuous time, and then we
describe the discrete version, followed by adaptive control.

3.4.1. Model

The pendulum is shown in Figure 2. The equation of motion is given by

m`2θ̈ + cθ̇ + mg` sin(θ) = T (5)

where the mass is m, damping is c, length is `, gravity is g, torque is T, and angle is θ
(counter-clockwise is positive). This can be written in state-space form as

ẋ1 = x2

ẋ2 = − c
m`2 x1 +

g
`

sin(x1)−
1

m`2 u (6)

where x1 = θ, x2 = θ̇, and u = T. Our model is inaccurate, as we have not accounted for
the inertia and we have used an approximate friction model.

G

H

g

θ

l

m

T

Figure 2. Simple pendulum: This consists of a massless rod of length ` with a point mass m at the
end G. The pendulum is controlled by a torque T at the hinge joint H. Gravity g points downward.
The angle between the vertical and pendulum is θ measured in the counter-clockwise direction.

3.4.2. Discrete-Time Model

To obtain the discrete-time model, we choose our performance variable to be energy.
Thus, z = E = 0.5m`2x2

2 + mg`(1− cos(x1)). We measure and regulate the system energy
at x1 = θ1 = 0. We use a constant torque u = T = U for ts sec.

Assuming a baseline model, we first use non-linear root solving to find the control
input U0 that leads to a steady oscillation with energy E0 for the nominal model. There-
after, by using finite difference, we can find the constants â and b̂ to obtain the discrete
state equation

δE(k + 1) = âδE(k) + b̂δU(k)

= w(k)TX(k) (7)

where δE = E− E0, δU = U −U0, w =
[
â, b̂

]T , and X(k) =
[
δE(k), δU(k)

]T .
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The adaptive control law may be obtained from Equation (4) as follows.

â(k + 1) = â(k) + λa
e(k)

n2(k)
δE(k) + f1(k) (8)

b̂(k + 1) = b̂(k) + λb
e(k)

n2(k)
δU(k) + f2(k) (9)

where f1(k) and f2(k) are the projection signals to keep the parameters â and b̂ bounded,
0 ≤ âl ≤ â ≤ âu and â(0) ∈

[
âl , âu], and 0 ≤ b̂l ≤ b̂ ≤ b̂u and b̂(0) ∈

[
b̂l , b̂u].

f1(k) =


0, h1(k) ∈

[
âl , âu

]
,

âu − h1(k) h1(k) > âu,
âl − h1(k) h1(k) < âl ,

(10)

f2(k) =


0, h2(k) ∈

[
b̂l , b̂u

]
,

b̂u − h2(k) h2(k) > b̂u,
b̂l − h2(k) h2(k) < b̂l ,

(11)

where h1(k) = â(k) + λa
e(k)

n2(k) δE(k) and h2(k) = b̂(k) + λb
e(k)

n2(k) δU(k) [36].

3.5. Linearized Models and Adaptations Per Swing

Figure 3 shows one complete swing of the pendulum. The pendulum at section i
and i + 0.5 is in the vertical downward position, and at the instance i + 0.25 and i + 0.75,
it is in the extreme position. We develop three linearized models as follows. We have
three different models that differ in the location of the sections and in the number of
measurements and corrections made per section.

i+ 0.25, i+ 1.25, ...i+ 0.75, i+ 1.75, ...

i+ 0.50, i+ 1.50, ...

i , i+ 1, ...

(a)

(b)

(c)

(d)

Figure 3. A single swing of a simple pendulum. The pendulum’s motion may be divided into
four distinct instants. (a) Instant i, i + 1, . . ., the pendulum is in the vertically downward position
with angular velocity in the counter-clockwise direction, θ̇i, θ̇i+1, (b) instant i + 0.25, i + 1.25, . . .,
the pendulum is in the extreme position θi+0.25, θi+1.25, . . ., (c) instant i+ 0.5, i+ 1.5, . . ., the pendulum
is in the vertically downward position with angular velocity in the clockwise direction, θ̇i+0.5, θ̇i+1.5,
and (d) instant i + 0.75, i + 1.75, . . ., the pendulum is in the extreme position θi+0.75, θi+1.75, . . .

3.5.1. One Model/One Measurement/One Adaptation (1Mo-1Me-1Ad) Per Period

Here, we have one model in one swing period (see Figure 3).

δE(i + 1) = â1δE(i) + b̂1δU(i) (12)
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We measure the system energy once: when the pendulum is in the vertically down-
ward position and moving to the right (see Figure 3a). We use this measurement to
adapt the model â1 and b̂1 using Equations (8) and (9). Thus, we have one model, one
measurement, and one adaptation per swing.

3.5.2. Two Models/Two Measurements/One Adaptation (2Mo-2Me-1Ad) Per Period

Here, we have two models in one swing period (see Figure 3).

δE(i + 0.5) = â2δE(i) + b̂2δU(i)

δE(i + 1) = â3δE(i + 0.5) + b̂3δU(i + 0.5) (13)

We measure the system energy twice: when the pendulum is in the vertically down-
ward position and moving to the right and left (see Figure 3a,c). We use these two mea-
surements to adapt the model â2, â3, b̂2, and b̂3 using Equations (8) and (9). Thus, we have
two models, two measurements, and one adaptation per model per swing.

3.5.3. Two Models/Two Measurements/Two Adaptations (2Mo-2Me-2Ad) Per Period

Here, we have two models in one swing period (see Figure 3). This is done by
exploiting the symmetry in 2Mo-2Me-1Ad by observing that â2 = â3 and b̂2 = −b̂3.

δE(i + 0.5) = â2δE(i) + b̂2δU(i)

δE(i + 1) = â2δE(i + 0.5)− b̂2δU(i + 0.5) (14)

We measure the system energy twice: when the pendulum is in the vertically down-
ward position and moving to the right and left (see Figure 3a,c). We use this measurement
to adapt the model parameters â2 and b̂3 twice using Equations (8) and (9). Thus, we have
two models, two measurements, and two adaptations per model per swing.

We expect that adaptations using 2Mo-2Me-2Ad are at least two times faster compared
to 1Mo-1Me-1Ad and 2Mo-2Me-1Ad. It is also noted that for directionally dependent
model (e.g., friction), one cannot exploit the symmetry, and hence, 2Mo-2Me-2Ad could
give poor results.

4. Results
4.1. Computer Simulations

In this section, we discuss computer simulations that were performed to validate the
proposed approach. In all simulations shown here, we linearize the continuous time model
shown in Equation (5). We estimate the plant parameters assuming m̂ = 1 kg, damping
ĉ = 0, and length ˆ̀ = 1 m. The true parameters are m = 1.889 kg, c = 0.0889 Ns/m2,
and length ` = 1 m. We measure the system velocity θ̇ in the vertically downward direction
θ = 0. Our goal is to achieve θ̇0 = 3.14 rad/s, which corresponds to the nominal energy
of E0 = 0.5m̂ ˆ̀2θ̇2

0 = 4.928 J. We use a constant torque u = T = U for ts = 0.1 s, which
is long enough to add energy, but short enough that it does not go beyond one quarter
of a swing. The nominal torque U0 = 0, as the estimated system is damping free. Using
finite difference gives â1 = â2 = â3 = 1 and b̂1 = b̂2 = −b̂3 = 0.1546. The bounds for
1Mo-1Me-1Ad are: âl

1 = 0.8124, âu
1 = 1, b̂l

1 = 0.1262, and b̂u
1 = 0.1546. The bounds for

2Mo-2Me-1Ad and 2Mo-2Me-2Ad are: âl
2 = âl

3 = 0.9016, âu
2 = âu

3 = 1, b̂l
2 = −b̂u

3 = 0.1397,
and b̂u

2 = −b̂l
3 = 0.1546. We chose ε = 0.1. To tune the learning rates λa and λb, we started

with a small value for both parameters and kept doubling them until the convergence was
fast without driving the system to become unstable. The tuned learning rates λa = 0.25
and λb = 0.75 were used for all simulations.

We performed these tests for a range of combinations with uncertainty: 1 ≤ m ≤ 3 and
0 ≤ c ≤ 0.2. We consistently obtained the same results. We have shown one representative
result in Figures 4 and 5.
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Figure 4. Comparison of adaptive to non-adaptive control: (a) 1Mo-1Me-1Ad, (b) 2Mo-2Me-
1Ad, (c) 2Mo-2Me-2Ad, and (d) all adaptive controllers, where Mo is the number of models per swing,
Me is the number of measurements per swing, and Ad is the number of adaptations per model.
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Figure 5. Adaptations of the parameters (a) â and (b) b̂ as a function of the swing number for all
three adaptations.

Figure 4a–c compare the three adaptive controllers versus non-adaptive control. We
started all simulations with the nominal energy at 30% error. The plot shows the percentage
error in the energy versus the swing period. The non-adaptive controller for 1Mo-1Me-1Ad
settled at 10%, while that for 2Mo-2Me-1Ad and 2Mo-2Me-2Ad settled at almost 0%. In all
cases, the adaptive controllers were able to reduce the error to 0 in finite time. While 1Mo-
1Me-1Ad achieved this in seven time periods, 2Mo-2Me-1Ad and 2Mo-2Me-2Ad achieved
this in about four time periods. Figure 4d compares the percentage error versus the swing
period for the three adaptive controllers. Finally, Figure 5a,b compares the evolution of
â and b̂ for the three adaptations. From these plots, it can be seen that 2Mo-2Me-2Ad
outperformed 2Mo-2Me-1Ad, which, in turn, outperformed 1Mo1me-1Ad.

4.2. Hardware Setup

Figure 6 shows the hardware setup to verify the event-based discrete adaptive con-
troller. The supporting structure for the entire system consisted of aluminum T-slots.
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The pendulum consisted of an acrylic bar with a length of 0.6 m. The bar was attached to
the supporting structure through 3D-printed support and bearing. A tether connected to a
bowden cable ran through to another tether that connected to a shaft attached to an O-drive
brushless direct-current motor (BLDC) through a 7:1 plastic gearing [37]. A spring at the
motor side, which was called the tension spring, kept the system in tension, while another
spring at the pendulum side, which was called the compensation spring, ensured that
the system was in tension when not actuated (also see the Appendix to [17]). The spring
constant for both springs was 1.13 N/m. Note that the cable actuation allowed the motor
to apply torques on the pendulum in only one direction. This was a limitation of our
experimental setup.

tension 
spring

power 
supply

compensation
spring

pendulum

added weight

inertial 
measurement 
unit

motor 
driver

Raspberry pi

bowden cable
(from motor)

bowden cable
(from pendulum)

motor 

Figure 6. Hardware setup to verify the event-based adaptive controller.

The pendulum had a nine-axis inertial measurement unit (IMU) (Adafruit [38]).
The IMU was substantially noisy, and we used an exponential filter to smooth the data [39].
The O-drive motor was provided with 24 V and was controlled by an O-drive motor
driver. The data from the IMU were processed by a Teensy microcontroller [40] (not
shown) and commands were sent to the O-drive motor driver at 1 KHz. The Teensy mi-
crocontroller communicated with the IMU and sent data to a Raspberry Pi at 200 Hz for
recording purposes.

4.3. Hardware Experiments

Since the hardware experiments could only actuate in one direction, we could only
test the One Model, One Measurement, One Adaptation (1Mo-1Me-1Ad) in the test setup.
Using the simulation as a guide, we obtained â = 0.7 and b̂ = 0.1546. We used z = θ̇
in the vertical downward direction. The reference speed was our performance index,
z0 = θ̇0 = 3.14 rad/s. The adaptive control law was

δθ̇(k + 1) = âδθ̇ + b̂δU(k),

= w(k)TX(k), (15)

Using the simulation values λa and λb as starting points, we experimentally tuned
the learning parameters to λa = 0.2 and λb = 0.8 based on the acceptable convergence
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rate. The bounds were: âl = 0.7, âu = 1, b̂l = 0.15, and b̂u = 0.3. In all experimental
trials, the pendulum was started from rest at θ = 0. We verified our control approach by
performing five experiments with an added mass of 0.3 kg and another five experiments
with an added mass of 0.5 kg.

Figure 7a,b show the errors as a function of the iterations for non-adaptive control
(blue dashed line) and adaptive control, i.e., 1Mo-1Me-1Ad (red solid line). The bands
show two standard deviations. It can be seen that the non-adaptive control settled to
about 30% error, while the adaptive control settled to about 20% for 0.3 kg and to 10%
for 0.5 kg. It can also be seen that it took about 5–10 iterations for the error to settle to its
lowest value. These results are consistent with the simulation results shown in Figure 4a.
Figure 7c,d show the motor torques as a function of iterations for non-adaptive control
(blue dashed line) and adaptive control, i.e., 1Mo-1Me-1Ad (red solid line). The bands
correspond to the standard deviations. It can be seen that the mean values of the torque
for the adaptive/non-adaptive control were about the same. However, the non-adaptive
control showed a higher variability, thus showing relatively higher errors. Figure 8a,b
show the evolution of â, while Figure 8c,d show the evolution of b̂ for all five trials as a
function of time (solid lines) against the non-adaptive values (black dashed line). Note that
these converged to different â and b̂, but converged to about the same control gain of âb̂−1.
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Figure 7. Comparing error and torque for five trials for the adaptive and non-adaptive controllers:
(a,c) are for added mass of 0.3 kg; (b,d) are for added mass of 0.5 kg. The band shows one standard
deviation for five trials and the line shows the mean.
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Figure 8. The control parameters as a function of time. (a,c) show parameters for added mass of
0.3 kg and (b,d) show parameters for added mass of 0.5 kg. The solid lines show the adaptive control
parameters, where each line corresponds to a trial, and the dashed lines show the parameters for the
non-adaptive controller.

These results suggest that the hardware results followed the simulation results for
1Mo-1Me-1Ad (Mo = model, Me = measurement, Ad = adaptation). Given that 1Mo-1Me-
1Ad is the most restrictive compared to the other models/controls (2Mo-2Me-1Ad and
2Mo-2Me-2Ad), we believe that their results would be at least as good as these results
when tested on hardware.

5. Discussion

We presented an event-based, intermittent, discrete control framework for low-
bandwidth control of systems to achieve set-point regulation. We measured the system
state at events during motion (e.g., angular velocity when the pendulum is vertical). These
measurements triggered the controller to turn ON intermittently (e.g., constant torque
for pre-specified seconds). The controller then achieved set-point regulation during the
movement cycle. We added an adaptive control layer that tuned the model parameters
using measurement errors, making the system robust to uncertainty. The framework
was demonstrated in simulation and hardware experiments by regulating the velocity of
a pendulum.

Unlike traditional discrete control, which is understood to be a discrete approximation
of the continuous control, our controller is truly discrete with time between measurements,
and the control is approximately of the order of the natural time period of the system.
For example, in the case of the pendulum, the natural time period is t = 2π

√
`/g ∼ 2s.

We take one measurement for 1Mo-1Me-1Ad or two measurements per 2 s for 2Mo-2Me-
1Ad/2Mo-2Me-2Ad. We use the resulting errors to tune the control parameters to achieve
set-point regulation. Such time delays are natural in biological systems due to the slowness
of chemical-based nerve conduction, of neural computation, and of delays in muscle
activation [41]. Other controllers that can handle time delays are the posicast controller [26],
act and wait controller [42], and intermittent controller [31].

The two model parameters â and b̂ model the sensitivities of the state and controls
over a finite horizon and predict the system state in the future for the state and control at the
current time. Thus, the framework is predictive. A predictive framework is very sensitive
to the model parameters. By creating an adaptive framework where we tune the model
parameters using measurements, we can achieve robustness to parameter uncertainty.

The discrete control framework that we advocate can make the system deadbeat,
which is the full correction of disturbances in finite time (e.g., see [35], p. 201). The classical
continuous controllers (e.g., proportional or proportional-derivative control) lead to expo-
nential decay and can never achieve full correction in finite time (e.g., see [43], pp. 416–417).
In the absence of parameter uncertainty, the framework can lead to deadbeat control in a
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single measurement/control cycle [34]. In this paper, where we had model uncertainty, we
could still achieve deadbeat control in 2–5 discrete time intervals.

We anticipate the use of such an event-based, discrete controller for swing-leg control
in legged robots, prostheses, and exoskeletons. In the past, we successfully used the
controller for creating walking gaits that led to a distance record [17]. In such tasks, it is
important to achieve certain objectives, such as step length or step frequency, rather than
tracking. In addition, since the controller is relatively simple and uses a low bandwidth, it
requires relatively simple sensors and computers. Another important task is to achieve
deadbeat control, which the controller achieves in two swings in the absence of uncertainty
(see 2Mo-2Me-2Ad). Finally, for prostheses and exoskeletons, one needs to customize
the controller for different people, which can be achieved by adapting the model using
measurement errors, as was done here.

The major limitation of the approach is that it is sensitive to: (1) the performance
index; (2) the choice of events; (3) the choice of control parameters; (4) the sensors used
for control. These parameters are task- and system-dependent and are generally chosen
by a design. We provide some heuristics in Section 2.2 in the ref. [34] However, as of
more recently, more automated methods based on hyper-parameter tuning may also be
used [44]. In addition, it is unclear how the system would perform in the presence of
noisy measurements, although our limited experiments show that some smoothing of
the sensor measurements can lead to acceptable performance. One potential solution is
to use a Kalman filter where the model is updated as the adaptive control updates the
parameters. Finally, note that the controller is only useful when we are interested in loosely
enforcing tracking during the tasks and not for tight trajectory tracking, as required in
some other tasks.

6. Conclusions

In this paper, we have shown that a truly discrete adaptive controller can regulate a
system in the presence of modeling uncertainty. In particular, using a simple pendulum
with a time constant of 2 s, we can achieve steady velocity control in about two swings
with only two measurements (at roughly 2 Hz) and in about five swings with only one
measurement (roughly 1 Hz). Using a simple pendulum test setup with about 50% mass
uncertainty, we can achieve regulation in about 5–10 swings with one measurement per
swing. These results suggest that this event-based, intermittent, discrete adaptive controller
can regulate systems at low bandwidths (few measurements/few control gains), and this
opens up a novel method for creating controllers for artificial devices such as legged robots,
prostheses, and exoskeletons.
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