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ABSTRACT
We consider the problem of a 2D point mass model navigat-

ing a complex terrain comprising of stepping stones and stairs
while optimizing an energy metric. We solve the problem using
receding horizon control as follows. We preview a fixed distance
ahead at mid-flight. Then we optimize the number of steps, the
controls, and foot placement location, choosing the solution with
least energy cost. However, we implement only the solution for
the first step which takes the model to the next mid-flight. This
process continues until the model reaches the end of the terrain.
We improve on past approaches by (1) considering a fixed dis-
tance preview as done by humans instead of fixed time or fixed
steps, and (2) adding obstacles as a cost and elevation change
as a condition within the model dynamics, thus avoiding mixed-
integer formulations which are computationally expensive. The
resulting problem is solved using constrained nonlinear program-
ming. We demonstrate that the approach works for randomly
chosen terrain consisting of stepping stones and stairs.

1 Introduction
Dynamically balancing robots have small feet or point feet

and have to continue moving to stabilize themselves. Because of
their small footprint and dynamic nature, they are able to nav-
igate complex terrains consisting of ditches, stairs, and obsta-
cles. However, planning and control of dynamically balancing
robots on such complex terrain presents a formidable compu-
tational challenge because of the discretely changing dynamics
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FIGURE 1: Problem conceptualization: The hopper has to ne-
gotiate a terrain consisting of stairs and stepping stones (gray
rectangles). At mid-flight, the hopper uses a vision sensor to pre-
view a fixed distance ahead. Then the hopper plans the optimal
steps and strategy to navigate the fixed distance. The hopper then
executes the optimum strategy for the first step until the next mid-
flight. Then the hopper replans as before continuing the process
until it crosses the terrain.

(i.e., dynamics during touchdown are different than those in free
flight). Moreover, if an objective function has to be minimized
then there are additional computational challenges. Here, we ad-
dress the problem of navigating a terrain consisting of stepping
stones and stairs, a benchmark problem in dynamic legged lo-
comotion, while optimizing an energy metric while taking into
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account the robot dynamics.
We consider a realistic scenario that a robot might be sub-

jected to and is shown in Fig. 1. Here the robot can see a fixed
distance ahead with a vision sensor (e.g., an RGB-D camera)
in the flight phase. The robot then plans the optimum num-
ber of steps and controls for each step over the fixed distance
ahead (planning). Next, the robot implements the control strat-
egy for only the first step to reach the next flight phase (control).
The process continues until the robot reaches the end of the ter-
rain. This formulation of the problem that uses a model to plan
ahead based on sensory data is known as model predictive con-
trol (MPC) or receding horizon control (RHC). Although RHC
is popular in robotic applications such as cars and drones, it is
fairly new in the area of legged locomotion.

2 Background and related work
The simplest approach to motion planning is to first plan

foot step locations from start to goal, followed by creating a con-
troller that will enable the robot to meet those foot step locations.
The foot step planning may be achieved with A-star planner with
heuristics such as effort, risk, and/or number and complexity of
steps taken to plan footsteps from start to goal [1] or energy esti-
mates obtained from human movement data [2]. The main issue
with this approach is that the planner is usually based on kine-
matics and conservative estimates of possible motion leading to
sub-optimal solutions.

A more complete approach is to do foot step planning by
considering the dynamics. One way to do this is to precompute
all feasible solutions for a single step considering the dynamics.
Then these feasible solutions can then be searched using A-star
planners [3] and probabilistic road maps [4]. Although these ap-
proach considers the dynamics, these methods work with discrete
controls and states, thus they are not able to handle boundary
conditions (e.g., step length, velocity constraint, final state spec-
ified).

Boundary value problems are much easily handled with
continuous-optimization methods (e.g., trajectory optimization).
Given a set of footholds, presumably from A-star planner, one
needs to solve for a trajectory optimization problem that mini-
mizes a suitable cost while constraining the feet to line up with
the chosen footholds [5]. Alternately, the foot step location can
be included as a cost function using control barrier function [6].

Continuous optimization problems where foothold locations
are optimization variables lead to an OR constraint [7, 8]. That
is, step one can only take place at one point in the terrain and no
other place. This is formulated as a mixed integer optimization
problem that is computationally more challenging than a tradi-
tional optimization problem with only real numbers.

While most past approaches consider stepping on (e.g., el-
evation) or away (e.g., stepping stones) from an obstacle, there
are problems where it is best to step over the obstacle. In such

case, one needs to consider the possibility that the leg would col-
lide with the obstacle in mid-air. To tackle this problem, one
can discretize the state at multiple points in space and obstacles
as polytopes. Then the optimization problem is to plan the mo-
tion of the robot to be in the free space polytopes using a mixed
integer programming approach [9].

Receding horizon control is gaining popularity as tool for
robust trajectory optimization. The key idea is to preview and
consequently plan for fixed time ahead [10, 11]. But only some
portion of the plan is implemented while the rest is discarded. As
the robot moves to a new position, new data is available and the
process continues.

Our approach is also based on receding horizon control as
follows. The robot scans a fixed distance ahead, then plans
footholds, controls, and number of steps, implements the solu-
tion for the first step and continues the process until it reaches
the end of the terrain. Our work is novel from previous works
in the following ways: (1) we plan for a fixed distance ahead,
instead of fixed time or fixed steps ahead, as this is more similar
to human behavior [12] and (2) we incorporate obstacles (here
stepping stones) as a cost and elevation change in the dynamics
of touchdown thus avoiding mixed-integer programming formu-
lation.

3 Model
Fig. 2 shows a 2D point mass model [13]. The model con-

sists of a point mass m0 at the hip and a massless leg with a
maximum leg length `0. There are two actuators, a prismatic
actuator that generates an axial force F along the leg during the
support phase and a rotary actuator that servos the leg at a desired
angle θ during the flight phase. The variables of the model are
non-dimensionalized by dividing them to terms given as follows:
time by

√
`0/g, distance and leg length by `0, velocity by

√
`0g,

acceleration by g, and force by mg.
The non-dimensionalized states of the model are represented

by {x, ẋ,y, ẏ}, where x and y are the positions of the center
of mass, and ẋ and ẏ are the corresponding velocities. The
model starts at the apex (see Fig. 2(a)), where the state vector
is {xi, ẋi,yi, ẏi = 0}, and then falls under gravity given by

ẍ = 0,
ÿ =−1, (1)

until the contact with the ground is detected by the touchdown
event y−cosθ−h(xc) = 0, where xc is the x-position of the con-
tact point and h(x) is the terrain profile. Thereafter, the hopper
enters the stance phase represented by

῭= `θ̇ 2− cosθ +F,

`θ̈ =−2 ˙̀θ̇ + sinθ , (2)
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FIGURE 2: A complete step for the hopping model: The model starts in the flight phase at the apex position (vertical velocity is zero),
followed by the stance phase, and finally ending in the flight phase at the apex position of the next step. The hopping model has a
prismatic actuator that is used to provide an axial braking force Fb in the compression phase and an axial thrust force Ft in the restitution
phase, and a hip actuator (not shown) that can place the swinging leg at an angle θ with respect to the vertical as the leg lands on the
ground.

where F is a positive axial force along the leg. The first half
of the stance phase from touchdown to the maximum compres-
sion of the leg length (defined by ˙̀= 0) is called compression
phase (Fig. 2(b)) and the second half of the stance phase from
the maximum compression of the leg length to takeoff (defined
by `− 1 = 0) is called restitution phase (Fig. 2(c)). The axial
force during the compression phase is F = Pb+β (1−`) and dur-
ing the restitution phase is F = Pt +β (1−`). In these equations,
β = k`0

mg is a constant, k is a constant (fixed) gain analogous to the

spring constant, ` =
√

(x−xc)2+(y−h(xc))2

`0
is the instantaneous leg

length measured with respect to the contact point xc, and Pb and
Pt are constant braking and thrust forces, respectively. After the
takeoff, the model enters the flight phase and ends up in the next
apex state, {xi+1, ẋi+1,yi+1, ẏi+1 = 0}, (Fig. 2(d)).

Conceptually it is much easier to use step-to-step model
as the building block for optimization rather than the continu-
ous time model based on equations of motion. If the model
state at the apex is zi = {x, ẋ,y, ẏ = 0}i and the controls are
ui = {θ ,Pb,Pt}i then one can define a function F such that

zi+1 = F(zi,ui,h(xci)). (3)

The function F defines the step-to-step map or the Poincaré map
and includes the terrain profile h(xc). We obtain it by integrat-
ing the equations of motion for a given initial conditions zi and
controls ui.

4 METHODS
4.1 Terrain with ditches and elevation changes

The terrain profile considered here consists of ditches and
elevation changes (step-up and step-down). An example terrain

is shown in Fig. 3 (a).
The terrain is divided into permissible and forbidden regions

for foothold positions. The permissible regions are shown in
gray color and the forbidden regions are shown in red-dashed
color. The latter includes (1) the ditches and (2) the flat regions
near the elevation change. One way to incorporate the forbidden
regions in the optimization is to specify the feasible regions as
constraints and then find foothold positions within those feasible
regions. This formulation leads to a mixed-integer programming
problem [7, 9], which is harder to solve especially when the ob-
jective function is non-linear as it is the case here.

We avoid mixed-integer formulations by incorporating the
forbidden regions as a cost function. To do so, we define a terrain
cost as shown in Fig. 3 (b). The terrain cost is zero at all permissi-
ble regions, but is sufficiently high for all forbidden region. Then
we fit a cubic spline to ensure that the cost is a smooth function
of the terrain. Thus, given a foothold position xc, the terrain cost
Cterrain(xc) is known. The elevation change is incorporated in the
function h(x) by fitting a piecewise cubic Hermite interpolating
function (pchip in MATLAB) to the terrain.

4.2 Receding horizon control problem
The model starts at the apex of flight phase with initial posi-

tion x = 0 with apex height and apex horizontal speed specified
y(x = 0) (given) and ẋ(x = 0) (given). The terrain profile given
is specified by fitting a cubic spline h(x) where x specifies the x-
position. At each mid-flight the model can see and hence plan a
fixed distance dhorizon. Finally, we also impose that the end of the
terrain is x = D, and the apex height and apex horizontal speed
are the same as the beginning. That is, y(x = D) = y(x = 0) and
ẋ(x = D) = ẋ(x = 0).

We solve a receding horizon control problem at each apex,
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FIGURE 3: Terrain profile: (a) The terrain is shown with gray
rectangles and ditches are in the white spaces between the step-
ping stones. For feasible movement all footholds (xc) should be
on the gray rectangles. We model the terrain with piecewise cu-
bic polynomial, h(x). Thus, given a foot placement x-position to
be xc, the vertical position is found as h(xc). (b) To avoid step-
ping in the ditch and on edges near elevation change (shown as
red dashed line), we assign a terrain cost that increases sharply
as shown.

where we re-initialize the step number i= 0. The model’s current
x-position x0, apex height y0, and horizontal speed ẋ0 are known.
The vision sensor enables the robot to preview the terrain for a
distance x0 ≤ x ≤ x0 + dhorizon. Now we formulate a trajectory
optimization problem

min
N,zi,ui,xci

∑
i=(N−1)
i=0 Ei

(xN−1− x0)
+

i=(N−1)

∑
i=0

Cterrain(xci)

subject to: zi+1 = F(zi,ui,h(xci));
umin < ui < umax;
Dmin < xi+1− xi < Dmax;
xN−1 = dhorizon. (4)

where i = 0,1, ...,(N−1) indicates the planning horizon up to N
steps noting that N is 1 parameter, zi = {x, ẋ,y, ẏ = 0} are 3(N +
1) parameters, ui = {θ ,Pb,Pt}i is the set of controls at step i,
thus totaling 3N parameters, and xci is the foot location at step i
thus a total of N parameters. Thus, the total decision variables
are 1+ 3(N + 1) + 3N +N = 7N + 4 optimization parameters.
The mechanical energy usage at each step, Ei = Ek +EPb +EPt =∫
(|k(`− `0)d`|+ |Ptd`|+ |Pbd`|) is the mechanical energy used

per step, Cterrain(xci) is the terrain cost as described in Sec. 4.1,
Dmin and Dmax are minimum and maximum step length. The
absolute value is a non-smooth function of its argument, so we
can smooth it out using square-root smoothing [14].

This optimization problem can be solved using NPL solvers
such as SNOPT [15]. It should be noted that in this optimization
problem the decision variables depend on N, so it is not possible
to simultaneously optimize N and the other decision variables.
So there are two loops, an inner and an outer loop. The decision
variable N is optimized in the outer loop and the other decision
variables are optimized in the inner loop for a given N. This
optimization problem can be solved quite fast by suitable choice
of planning horizon, dhorizon.

5 Results
We present optimization results for: (1) terrain with ran-

domly placed stepping stones, (2) terrain with stairs going in-
crementally up and down, and (3) terrain consisting of randomly
placed stepping stones and stairs. For all these optimizations,
unless otherwise noted, we set up the numerics as follows.

We describe the model parameters and solution. We chose
the free parameter β = 40. We obtain the step-to-step or Poincaré
map F by numerically integrating the equations of motion using
dop853, a Runge-Kutta method of order 8(5,3) with adaptive
step size [16]. The integrator also has built-in capability to de-
tect events such as touchdown, mid-stance, take-off, and mid-
flight. The integrator is written in C++ and called from MAT-
LAB 2019b using a mex interface. The relative and absolute
tolerances for the integrator are set to 10−12.

We describe the optimization parameters. The terrain starts
at x = 0 and terrain ends at x = D = 22. The initial apex
height is y(x = 0) = 1.2 and the initial horizontal speed is
ẋ(x = 0) = 1.1. The minimum and maximum step lengths are
Dmin = 1.05, Dmax = 2.2, respectively. The bounds for the
controls, umin = {θ ,Pb,Pt} are: umin = {5,0,0}, and umax =
{30,5,5} where θ bounds are in degrees. The planning hori-
zon is xN−1 = dhorizon = 4. The planning horizon and the bounds
on the step lengths enable us to compute the minimum and max-
imum number of steps. Thus, we obtain the minimum planned
steps by rounding to the nearest integer toward positive infinity,
Nmin =

dhorizon
Dmax

= 4
2.1 = 1.9 ∼ 2. Similarly, we obtain the max-

imum planned steps by rounding to the nearest integer toward
negative infinity, Nmin =

dhorizon
Dmin

= 4
1.05 = 3.81∼ 3. Thus, at each

step at mid-flight we compute the optimal solution for N = 2 and
N = 3 and use the solution that has the least cost. We use con-
straint nonlinear programming solver SNOPT [15] to solve the
optimization problem. We now show results for the three ter-
rains.

5.1 Terrain with stepping stones
This terrain consists of 9 stepping stones with minimum and

maximum lengths of 0.7 and 3, and 8 ditches between stepping
stones with minimum and maximum lengths of 0.8 and 1.3. We
solve the receding horizon control problem described in Sec. 4.2
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FIGURE 4: Terrain with stepping stones: (a) x-y trajectory of the point mass shown in black solid line and the foothold positions
shown as brown solid circles, (b) the forward velocity at apex, (c) the total energy at apex, (d) foot placement angle, and (e) the braking
and thrust forces.

for this terrain. Fig. 4(a) shows the stepping stones, the ditches,
the foothold positions, and the x-y position of the point mass.
As seen in the figure, it takes the robot 16 steps to successfully
traverse the terrain. Fig. 4(b-e) illustrates the forward velocity
at apex, ẋapex, the total energy at apex, T Eapex = 0.5ẋ2

apex + yapex,
and the controls, {θ ,Pb,Pt}, at each step, respectively. The first
stepping stone and ditch are 3 and 1.3 in length, respectively.
Since the planning horizon is 4, and the step length is bounded,
the robot needs to take two steps on the first stepping stone. To
do so, the forward velocity needs to be decreased at the second
apex so that the robot can take a short step, but the height at
the second apex needs to be increased so that the total energy
stays almost the same. Taking a short step requires a small foot
placement angle, but the small foot placement angle would ac-
celerate the body forward. To compensate for this acceleration,
the braking force increases at a higher rate compared to the thrust
force. Similar reasoning can be applied for other steps. The robot
tries to keep the total energy at apex constant if possible as seen
mostly in the second half of the terrain, except for the last two

steps to ensure that the robot meets the final conditions at the
end of the terrain. The MCOT computed for the entire terrain
is ∑

i=16
i=1 Ei/dhorizon = 3.51/22 = 0.1595 which is 14.66% higher

than the MCOT = 0.139 computed for a level ground with the
same terrain length and without ditches.

5.2 Terrain with stairs
This terrain consists of 9 stairs with minimum and maxi-

mum lengths of 1.2 and 2.1, and heights of 0.1 and 0.25. We
solve the receding horizon control problem for this terrain. As
seen in Fig. 5 (a), it takes the robot 16 steps to successfully tra-
verse the terrain. The height of the point mass with respect to the
ground increases until the robot reaches the top most stair and
then decreases until the robot reaches the end of the terrain, but
the rate of height change depends on the relative elevation change
of two consecutive stairs. Fig. 5 (b) shows the forward velocity
at apex which mostly decreases for hopping up the stair and in-
creases for hopping down the stairs. The total energy at apex
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solid circles, (b) the forward velocity at apex, (c) the total energy at apex, (d) the foot placement angle, and (e) the power consumption
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shown in Fig. 5 (c) nearly follows the trend of the height at apex.
For hopping up the stairs, the robot takes different step lengths
due to the change in stair height and that is why we see fluctu-
ations in foot placement angle shown in Fig. 5 (d). However,
the foot placement angle slightly changes for hopping down the
stairs since the robot mostly takes 2 steps at each stair. Fig. 5 (e)
shows the power consumption of the foot placement angle which
is negative during the compression phase and positive during the
restitution phase. The thrust and braking forces are illustrated in
Fig. 5 (f). The thrust force is greater than the braking force for
hopping up the stairs to add energy to the system while it reverses
for hopping down the stairs to dissipate energy from the system.
Fig. 5(g) shows the power consumption of the braking and thrust
forces. The power consumption of the thrust force is greater than
that of the braking force for hopping up the stairs and less for
hopping down the stairs. We see a different trend in the last step
due to the final condition imposed on the forward velocity and
height at apex. The MCOT computed for the entire terrain is
MCOT = 3.528/22 = 0.1604 which is 15.4% higher than that
computed for a level ground with the same terrain length.

5.3 Terrain with stepping stones and stairs
This terrain consists of several stepping stones, ditches, and

stairs. The minimum and maximum lengths of the ditches are
0.5 and 1.2, and the height of stairs is fixed to 0.2 with respect
to their base. For this particular terrain, in addition to solving
the RHC problem, we performed another optimization problem,
called baseline. In this optimization problem, we preview the
entire terrain at mid-flight, xN−1 = D = 22, and optimize the de-
cision variables. Then the solution for the entire terrain is imple-
mented which takes the model to the end of the terrain. Fig. 6
shows the terrain, x-y position of the point mass, and foothold
positions for both problems. As seen in this figure, for both op-
timizations, it takes the model 15 steps to successfully traverse
the terrain. The x-y position of the point mass for both opti-
mizations is almost similar in the first half of the terrain. How-
ever, they look different in the second half. This is because the
baseline optimization has the knowledge of the whole terrain in
advance so it plans the steps such that there would be smooth
change between steps to meet the final conditions at the end of
the terrain. For brevity, we show the rest of the results only
for the RHC optimization in Fig. 7. The results in this figure
can be explained similar to those in Figs. 4-5. The mechanical
cost of transport for each optimization is MCOTRHC = 13.76 and
MCOTbaseline = 14.07.

6 Discussion
In this work, we have developed a control approach based

on receding horizon control to solve the navigation problem of
a 2D point-mass hopping model on complex terrain consisting

of stepping stones and stairs. The efficacy of the approach was
shown in tasks involving locomotion on various terrains includ-
ing stepping stones, stairs, and the combination of the two.

Our finding are as follows:

1. For the terrain with stairs, the apex forward velocity and
height generally decreases and increases for hopping up the
stairs, respectively, and vice versa for hopping down the
stairs. The total energy at apex is dominated by the apex
height rather than the apex forward velocity. The constant
thrust force is greater than the constant braking force for
hopping up the stairs to add energy to the system and vice
versa for hopping down the stairs. For the stairs with con-
siderable length, the changes of the foot placement angles
between steps are minimal because the model takes mostly
two steps in a single stair. Also the thrust force does more
work than the braking force for hopping up and less work
for hopping down the stairs, but both forces do more work
than the foot placement angle during the entire locomotion.

2. For the terrain with stepping stones, when the model takes
a high jump to overcome a ditch, the velocity generally de-
creases to avoid the significant change of the total energy
at apex. Similar to hopping on stairs, the apex height domi-
nates the apex forward velocity in determining the apex total
energy. The work done by the foot placement angle for hop-
ping on stepping stones is considerable compared to that by
the braking and thrust forces, and both forces have generally
done similar work during locomotion.

3. For the terrain consisting of both stairs and stepping stones,
the behavior of the model is almost a combination of the two
behaviors described for the other two terrains.

Our control approach has several advantages over previous
methods. First, the planning horizon in our control framework
is a fixed distance the robot can scan ahead rather than time or
number of steps. Planning based on the fixed distance ahead is
more analogous with human behavior [12] and consistent with
the mechanical cost of transport used as a common energy metric
in the legged locomotion community.

Second, incorporating obstacles as a suitable cost and ele-
vation change in the dynamics of touchdown allows us to use
nonlinear programming (NLP) solvers to optimize decision vari-
ables. However, incorporating terrain profile and obstacles as
constraints leads to a mixed-integer programming problem which
requires branch and bound algorithms [17] to solve. This prob-
lem is relatively harder to deal with, especially with nonlin-
ear cost functions. Also, solving the optimization problem us-
ing NLP as opposed to sampling-based methods [18] allows the
model to meet the boundary conditions such as position and ve-
locity constraints.

In the course of optimization, no passive solution (Pb = Pt =
0) is found even for parts of the terrain with no stairs/ditches.
This is due to the fact that our robot model is not the spring
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FIGURE 6: Comparing two different optimization problems (a) baseline optimization problem with xN−1 = 22, and (b) RHC opti-
mization problem with xN−1 = 4

loaded inverted pendulum model in which there is a physical
spring for storing and releasing energy during the stance phase.

There was insignificant difference among MCOTs for vari-
ous planning horizons. We solved the RHC problem for different
planning horizons xN−1 = 4,6,8 and performed the baseline op-
timization, xN−1 = D = 22. The difference among MCOTs was
less than 5%.

Our work has several limitations as follows. First, our con-
trol approach may be quite challenging for real-time implemen-
tation if a long planning horizon is chosen. This increases the
number of steps needed to be optimized, thereby making our ap-
proach computationally expensive. This issue can be mitigated
to some extent by using approximated models (e.g., low order
polynomials) for the Poincaré map [19] rather than solving for
the equations of motion online. Second, we defined a high cost
in the flat regions near the elevation change to avoid the leg colli-
sion with stairs. However, this solution may not work for terrain
with high elevation changes. A better solution would be to in-
clude collision avoidance in the flight phase in the optimization
formulation.

7 Conclusions and Future Work

The paper illustrates receding horizon control for motion
planning and control of a hopping model on terrain with step-
ping stones and stairs. In particular, we conclude that both: (1)
including the ditches as a cost function with a high penalty and
(2) including elevation changes into the physics of the model,
avoids mixed-integer formulations that are computationally ex-
pensive to solve.

The future work could focus on extending the approach to
3D model navigating on 3D terrain, reformulating the optimiza-
tion problem to solve it in real-time, and demonstrating the scala-
bility of the method to higher dimensional models such as models
with swing leg dynamics and torso dynamics.
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