
Robotica (2020) c© Cambridge University Press 2020

doi:https://doi.org/10.1017/S0263574720000211

Control policies for a large region of attraction

for dynamically balancing legged robots: a

sampling-based approach

Pranav A. Bhounsulea∗, Ali Zamania, Jeremy Krausea,

Steven Farrab, Jason Puseyc

a Dept. of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842

W Taylor St, Chicago, IL 60607 USA.

b Dept. of Mechanical Engineering, University of Texas at San Antonio,

One UTSA Circle, San Antonio, TX 78249 USA.

c Vehicle Technology Directorate, U.S. Army Research Laboratory,

Aberdeen Proving Grounds, Aberdeen, MD 21001 USA.

(Accepted MONTH DAY, YEAR. First published online: MONTH DAY, YEAR)

SUMMARY

The popular approach of assuming a control policy and then finding the largest region of

attraction (ROA) (e.g., sum-of-squares optimization) may lead to conservative estimates

of the ROA, especially for highly nonlinear systems. We present a sampling-based

approach that starts by assuming a ROA and then finds the necessary control policy by

performing trajectory optimization on sampled initial conditions. Our method works with

black-box models, produces a relatively large ROA, and ensures exponential convergence

∗ Corresponding author. E-mail: pranav@uic.edu

2 Control policies for legged robots

of the initial conditions to the periodic motion. We demonstrate the approach on a model

of hopping and include extensive verification and robustness checks.

KEYWORDS: Region of attraction, Orbital Lyapunov function, Poincaré map, Periodic

motion, Dynamically balancing legged robots, Deep learning neural nets.

1. Introduction

Dynamically balancing legged robots are characterized by a small footprint and thus

have to constantly move to stay balanced. The most well-studied approach to controlling

these robots is to first find a periodic trajectory,1 and second, develop a feedback control

policy to stabilize the periodic motion. Also, one may estimate the set of system states

that converge back to the periodic motion, known as the region of attraction (ROA), to

provide formal stability certificates.

The conventional approach for finding the ROA of a periodic motion is shown in Fig. 1

(a). Given a periodic motion, a linear control policy (e.g., linear quadratic regulator2)

is used for stabilization. The use of a linear control policy allows one to use convex

optimization tools such as sum-of-squares optimization to find a Lyapunov function and

the corresponding ROA.3 One issue with the approach is that a linear control policy may

be too restrictive and lead to a small region of attraction, this is especially true for highly

nonlinear systems.

We propose a different approach that involves inverting the conventional approach and

is shown in Fig. 1 (b). We assume a candidate Lyapunov function and a ROA (typically

a big region) and then find a control policy (usually a non-linear one) by performing

trajectory optimization for sampled initial conditions. We demonstrate that a higher

order polynomial or a neural network-based control policy is able to guarantee the ROA.

Another advantage of our method, specifically when applied to periodic systems, is that

we recast the trajectory tracking problem into a regulation problem by defining the ROA

at the Poincaré section, thus keeping the method computationally inexpensive. The net

result is an enlarged region of attraction with reasonable computational cost. Once the

Control policies for legged robots 3

regions of attraction are computed for multiple cyclic or steady-state gaits, they may be

sequenced together by reasoning about overlapping regions to create non-steady or agile

gaits using heuristics4 or more systematic motion planning algorithms such as rapidly

exploring random trees.5

Assume a region of attractionAssume a control policy

Find the region of attraction Find the control policy

(a) Conventional approach (b) Our approach

Fig. 1. Types of control approaches: (a) The conventional approach assumes a control policy (usually
a linear policy) followed by optimization to find the largest region of attraction (e.g., using sum-of-squares
optimization to find the largest level set for the Lyapunov function). (b) In our approach, we assume
a region of attraction followed by optimization to find the control policy (a higher order polynomial or
neural network control policy gives good results for non-linear systems). Our method uses sample-driven
trajectory optimization followed by non-linear regression provide an enlarged region of attraction even
for highly nonlinear systems.

The flow of the paper is as follows. First, we give some background and related work

on the region of attraction for legged systems in Sec. 2. Our overall approach is presented

in Sec. 3 including the model of hopping, which is our test example. The results are in

Sec. 4, followed by the discussion in Sec. 5, and finally the conclusion in Sec. 6.

2. Background and related work

The most simple dynamically balancing legged robots are those created by McGeer in the

early 1990s.6,7 McGeer showed that by tuning the natural dynamics (mass distribution,

geometry, foot shape, etc.), it is possible to get natural-looking walking motion on

a shallow incline. This concept is known as passive dynamic walking. Garcia et al.8

simplified McGeer’s model by using a point mass hip, massless feet, and straight legs.

The resulting model, called the simplest walker, has a single free parameter, the ramp

slope. They demonstrated that as the ramp slope increased, the model displayed period-

doubling leading to chaos, a phenomenon seen in many other non-linear dynamical

systems.9

4 Control policies for legged robots

Although passive dynamic walkers are energetically efficient (energy cost of movement

is zero), they are extremely fragile and knocked down by the slightest disturbance. For a

dynamical system, the set of initial conditions that converge back to the periodic motion

is called the basin of attraction (BOA) A. Schwab and Wisse10 used the cell mapping

method11 to find the BOA of the simplest walker. The cell mapping method relies on

extensive sampling and forward simulations to estimate the BOA of the system. First,

the state space is divided into cells. Then initial conditions are chosen in the middle of

the cells. For each initial condition, the system is simulated to check if it converges back

to the periodic motion. The process is repeated for all initial conditions chosen on the

cells. The resolution of the cells determines the accuracy of the method. A finer resolution

increases accuracy but also increases the computational cost. It was found that the BOA

for the simplest walker is very narrow, which is understandable given that the system is

completely passive. A similar brute force approach was used by Heim and Sprowitz12 to

find the BOA of the spring-loaded inverted pendulum (SLIP) model of hopping. They

have shown that a non-linear spring increases the BOA over the linear spring model.

However, unlike the passive dynamic walkers, the SLIP model uses active control of the

foot placement angle before touchdown.

A broader definition of stability is captured by the viability theory, which defines

the viability kernel defined as the set of all states from which it is possible to avoid

falling down.13 Unfortunately, it is computationally challenging to find this set even for

simplest legged systems. A computationally tractable approach was taken by Pratt et

al.14 by defining a capture region, which is the region where the robot needs to step to

come to a complete stop in one or more steps. The use of simple models of locomotion

such as linear inverted pendulum model enables easy computation of the capture region

and subsequent implementation in hardware.15 Zaytsev et al.16 did a broader analysis

using a simple model of locomotion that generalizes capture regions to a broader set of

A ROA is an estimate of the basin of attraction.

Control policies for legged robots 5

targets rather than just standing still and in the spirit of viability theory, computes the

states and controllers that avoid falling.

A global method for finding control policy and region of attraction is to use dynamic

programming. Dynamic programming returns a global policy and the value function or

the cost of executing the control policy. The issue with this approach is the method

suffers from the curse of dimensionality, that is, as the system complexity grows, the

storage and computations grow exponentially. The common way to deal with this issue

is to reduce the system to a simple abstraction, also known as a template,17 and use it for

controller design. For example, Whitman18 simplified a humanoid robot into three simple

independent models; a sagittal, a lateral, and a frontal model. Controllers were developed

for the separate models independently, but combined during implementation using time

as the phase variable. Another simplification approach taken by Mandersloot et al.19 is

to use dynamic programming to choose states and control actions at the Poincaré section

instead of the time trajectory.

Simulation-based tabulation of controllers followed by the online implementation is one

way of getting past the computational burden. Raibert20 used simulations to tabulate the

controls as a function of the system state. Then the polynomial surface was used to fit the

table. This allowed efficient storage of the table and for real-time implementation. In a

similar vein, Da et al.21 used simulation to create controllers as functions of system states

and terrain height. The data was then inputted into a supervised learning framework to

learn a policy, which was then implemented in hardware. Our method is similar to the

latter; we generate state, control pairs using optimization followed by learning a function

from the states to the controls using regressors such as a deep neural network.

Local control methods involve creating a local control policy for the stabilization of

the periodic motion. For example, Tedrake et al.2 used a Linear Quadratic Regulator

(LQR) to stabilize the periodic motion. Then, using the LQR cost as a value function in

combination with sum-of-squares optimization,3 they found a Lyapunov function and the

corresponding region of attraction. The work by Manchester et al.22 split the dynamics

6 Control policies for legged robots

into transverse and tangential components and then searched a Lyapunov function and

region of attraction on the transverse dynamics using sum-of-squares optimization. These

approaches lead to the creation of the region of attraction as a tube along the trajectory.

In our work, we are primarily interested in stabilizing a periodic motion. Our work is

different from past work in several ways:

1. We define the Lyapunov function and the region of attraction at the Poincaré section,

called as the discrete or the orbital Lyapunov function.23 Thus we are solving a

regulation problem and the region of attraction is a single surface of dimension n− 1 (n

is the number of states of the system) at the Poincaré section compared to the tracking

problem and the region of attraction for t samples along the trajectory, which will be

n× t states which define a tube along the trajectory (see Tedrake2).

2. The control policies we find allow exponential convergence to the periodic motion using

an orbital Lyapunov function. Previous methods based on LQR generate asymptotic

convergence to the periodic motion, which is relatively slower.

3. Our method can work with black-box models of the system to find a nonlinear control

policy. This is in contrast to past approaches that need a specific structure in the

model and/or controllers (e.g., polynomial models for sum-of-squares optimization).

4. Our method is able to find a relatively larger region of attraction compared to past

approaches, but at the expense of finding a more complex control policy (e.g., nonlinear

control policy).

3. Methods

The details of our approach are shown in Fig. 2 and are elaborated in this section. First, as

shown in Fig. 2 (a), we define preliminaries needed for analysis of cyclic gaits. Second, as

shown in Fig. 2 (b), we assume a region of attraction and use an exponential control

orbital Lyapunov function within a trajectory optimization framework for controller

design. Third as seen in Fig. 2 (c), the results of trajectory optimization on samples

chosen in the region of attraction are tabulated. Finally, as shown in Fig. 2 (d), we

Control policies for legged robots 7

Fixed point
x= F(x u),

Limit cycle

Poincare
section

Assumed region
of attraction

Perturbed
trajectory

Perturbed state (x)
& related control (u)

(a) Periodic motion (b) Trajectory optimization (c) Control/state tabulation
 for region of attraction

(d) Control policy
 and verification

x x xj... u u uk... u= (x),f x, ...,xj

u= (x),f x, ...,xj

uk= (x),f x, ...,xjk

.

.

Fig. 2. Overview of our sampling-based optimization approach: (a) A gait that is periodic
repeats itself in one or more steps, (b) a region of attraction is assumed at the Poincaré section and
control actions (set-points, gains, amplitudes, etc) are found that lead to exponential convergence to the
periodic motion at the section, (c) trajectory optimization is repeated for sampled points in the region of
attraction to generate a look-up table for initial states and corresponding control actions, (d) regression
is performed to fit a control policy for each control action as a function of state followed by verification.

obtain a control policy from the tabulated data and followed by extensive verification of

the control policy by simulating the system under external disturbances and modeling

errors.

3.1. Periodic motion

In this paper, we are interested in a one-step periodic motion, which is a movement

pattern that repeats itself after a single step (see Fig. 2 (a)). A Poincaré section is an

instant in the gait cycle (e.g., mid-stance, foot-strike). A Poincaré map F is a function

that maps the state at the Poincaré section to itself after one step and is given by

xi+1 = F(xi,ui), (1)

where i is the step number, xi are the states at step i, and ui are the control actions

at step i. In order to find a periodic motion, for a given nominal state x0 there is a

corresponding nominal control u0 such that

x0 = F(x0,u0). (2)

8 Control policies for legged robots

3.2. Trajectory optimization

First, we introduce the stability metric called the orbital Lyapunov function and then

we formulate the trajectory optimization problem.

3.2.1. Exponential convergence using control orbital Lyapunov function. We define a

Lyapunov function (V) at the Poincaré section as follows

V (∆xi) = (∆xi)TS0∆xi = (xi − x0)TS0(xi − x0) (3)

where x0 is the fixed point of the periodic motion, xi 6= x0 is a system state at the

Poincaré section that needs to be stabilized, and S0 is a positive definite matrix

that determines the shape of the region of attraction. The condition for exponential

stabilization is

V (∆xi+1)− V (∆xi) ≤ −αV (∆xi), (4)

where 0 < α < 1 is the rate of decay of the Lyapunov function between steps. Thus, the

condition for exponential stability can be rewritten in terms of control using Eqns. 3 and

4 as follows

V (∆xi+1)− (1− α)V (∆xi) ≤ 0,

=⇒ (xi+1 − x0)TS0(xi+1 − x0)− (1− α)(xi − x0)TS0(xi − x0) ≤ 0,

=⇒
(
F(xi,ui)− x0

)T
S0

(
F(xi,ui)− x0

)
− (1− α)(xi − x0)TS0(xi − x0) ≤ 0. (5)

Equation 5 is the condition on the orbital Lyapunov function for exponential orbital

stabilization (step-to-step stabilization). Specifically, we select ui such that the above

condition is met. The variable α is set to 0.9 in all simulations. The rationale is that

Control policies for legged robots 9

a value of 0.9 gives a good compromise between rate of convergence and robustness to

modeling errors (see23 for more details).

3.2.2. Trajectory optimization problem formulation. The trajectory optimization is done

for a given initial condition at the Poincaré section xi 6= x0 (see Fig. 2 (b)) as follows

minimize
ui

Mechanical Cost Of Transport (MCOT) =
Mechanical Work Per Step

Weight× Step Length

(6)

subject to: xi+1 = F(xi,ui) (7)(
F(xi,ui)− x0

)T
S0

(
F(xi,ui)− x0

)
− (1− α)(xi − x0)TS0(xi − x0) ≤ 0.

(8)

In the above problem, the control actions ui are control parameters that are set once-

per-step. Some examples of control actions are: feedback gains, set-points, amplitude of

suitable time-based functions. All these control actions, the number and type of actions,

are designer’s choice (also see Fig. 4).

The optimization problem defined by Eqns. 6 - 8 may be solved using parameter

optimization using collocation or shooting methods (for a review see ref.24). We use a

direct shooting method in all optimizations.

3.3. Control/state tabulation for the region of attraction

The Region Of Attraction (ROA) of the controller is the set of all initial conditions

xi that would converge to the fixed point, x0. As noted earlier, in our method, we

start by assuming a region of attraction. Then, we sample the region of attraction to

generate a set of initial conditions xi as follows. We choose a level set of the Lyapunov

function, (xi − x0)TS0(xi − x0) = c, where c is a constant and has a small value to start

with. We choose n equally spaced points on this level set. This process is repeated for

multiple level sets of increasing value for c to generate the set of initial conditions xi.

The control/state tabulation is done as follows. For each initial condition xi, we solve the

10 Control policies for legged robots

trajectory optimization problem given in Sec. 3.2.2 to obtain the corresponding control

action ui. The control/state pairs are saved in a tabular format (see Fig. 2 (c)).

3.4. Control policies and verification

Based on the control/state tabulation, we are interested in fitting a control law for each

control action as follows

uk = fk(x1, x2, x3, ..., xJ) k = 1, 2,3,..,K (9)

where k denotes the index for each control action (total K actions) and j indicates

the index for each state (total J states). The function f is a designer’s choice. We use

linear, quadratic, and a neural networks in our results and compare the fit with each

other by doing additional simulation using additional randomly chosen initial conditions.

In addition, we simulate the system to disturbances and modeling errors to check the

robustness of the control policy (see Fig. 2 (d)).

3.5. Model of hopping

Prismatic
actuator

θ

F = P + k ()0
-bb

iy

iẋ

F = P + k ()0
-tt

iy
+1

ẋ i+1

 Foot
placement
angle

(a) Flight phase (b) Compression phase (c) Restitution phase (d) Flight phase

(a) (b)

Fig. 3. A complete step for the hopping model: The model starts in the flight phase at the apex
position (vertical velocity is zero), followed by the stance phase, and finally ending in the flight phase at
the apex position of the next step. The hopping model has a prismatic actuator that is used to provide
an axial braking force Fb in the compression phase and axial thrust force Ft in the restitution phase, and
a hip actuator (not shown) that can place the swinging leg at an angle θ with respect to the vertical as
the leg lands on the ground.

We demonstrate our method on a model of hopping shown in Fig. 3 (a). The model

consists of a point mass body with mass m = 80 kg and maximum leg length `0 = 1

m. Gravity points downwards and is denoted by g = 9.81 m/s2. There is a prismatic

Control policies for legged robots 11

actuator that can generate an axial force F along the leg and a hip actuator that can

place the swing leg at an angle θ.

The states of the model are given by {x, ẋ, y, ẏ} where x, y are the x- and y- position

of the center of mass and ẋ, ẏ are the respective velocities. A single step of the hopper

shown in Fig. 3 (a)-(d) is given by the following equation:

Flight

apex︷︸︸︷−→ Flight

touchdown︷︸︸︷−→ Stance compression→
mid-stance︷︸︸︷−→ Stance restitution→

takeoff︷︸︸︷−→ Flight︸ ︷︷ ︸
one step/ one-step periodic motion

apex︷︸︸︷−→ Flight

We explain the above equation in detail next. The model starts at the apex (see Fig. 3

(a)) where the state vector is, {xi, ẋi, yi, 0}. The model then falls under gravity,

ẍ = 0, ÿ = −g (10)

till contact with the ground is detected by the condition y − `0 cos(θ) = 0, where θ is

the foot placement angle and measured relative to the vertical. Thereafter, the ground

contact interaction is given by (see Fig. 3 (b), (c)),

mẍ = F
(x− xc)

`
, mÿ = F

y

`
−mg (11)

where xc is the ground-foot contact point that needs to be set at every step depending

on the ground-foot contact point at touchdown, F > 0 is the linear actuator force along

the leg. For the first half of the stance phase from touchdown to mid-stance (defined by

ẏ = 0 B), called the compression phase, the actuator force is a braking force F = Fb =

Pb + k(`0 − `). For the second half of the stance phase from mid-stance to take-off, called

the restitution phase, the actuator force is a thrust force F = Ft = Pt + k(`0 − `). Pb and

Pt are constant control forces during compression and restitution respectively C. In the

B We could have also used a slightly different condition ˙̀ = 0.
C The notion of compression and restitution is used with embellishment because during the compression
phase there could be a net positive work due to Pb ˙̀ > 0 and similarly during restitution phase there

12 Control policies for legged robots

above equations ` =
√

(x− xc)2 + y2 is the instantaneous leg length measured relative

to the contact point and k is constant (fixed) gain analogous to the spring constant. In

all simulations we take k = 32, 000 N/m. The take-off phase occurs when the leg is fully

extended, that is, `− `0 = 0. Thereafter, the model has a flight phase and ends up in the

next apex state, {xi+1, ẋi+1, yi+1, 0} (see Fig. 3 (d)).

θ θθ θ

Foot actuator

Hip actuator

P + k ()0-

˙

P

k ()
0
-

(t,)i

i i

θ
i -

,

Continuous controlDiscrete control

Control actions

Fig. 4. Block diagram of the controller: There are two control loops. A high bandwidth continuous
control inner loop that does a time-based position control of the swing leg and force control of the stance
leg, and a low bandwidth (once-per-step) discrete control outer loop that sets the foot placement angle

(θi) and thrust/braking force (P i = {Pt, Pb}).

Figure 4 shows the block diagram of our controller. There are two control loops, an

inner loop that does fast continuous control and an outer loop that does slow once-per-

step control. The inner loop has a tracking controller that tracks the swing leg angle

during flight phase as a function of time and the stance leg force during stance phase as

a function of leg length. The slow loop sets the foot placement angle (θi) and the stance

leg force (P i = {Pt, Pb}) once-per-step. This paper focusses exclusively on the outer, slow

controller.

could be a net negative work due to Pt ˙̀ < 0, but the effect would be very small for hopping considered
here.

Control policies for legged robots 13

4. Results

4.1. Periodic motion and trajectory optimization for sampled points in the assumed

region of attraction

We define the Poincaré map, F, at the apex. The apex is defined by the condition, ẏ = 0.

Thus, the state at the apex at step i, xi = {ẋi, yi}, and the control actions that are tuned

once-per-step as discussed in Sec. 3.5 are, ui = {θi, P i
b , P

i
t } (where θi, P i

b and P i
t are foot

placement angle with respect to vertical, the constant forces during compression and

restitution respectively (see Eqn. 11)). The step-to-step dynamics are given by xi+1 =

F(xi,ui). We do not have an analytical expression for F, but we build a simulation of the

system using MATLAB’s ordinary differential equation solver ode113 with an integration

tolerance of 10−9.

We arbitrarily chose the apex state for the periodic motion to be xi+1 = xi = x0 =

{5.0, 1.3} (units of m/s and m respectively) and numerically evaluated the control ui =

u0 = {θ0, P 0
b = 0, P 0

t = 0} necessary to ensure periodic motion given by the condition

x0 = F(x0,u0). The control necessary to achieve the periodic motion is u0 = {0.3465, 0, 0}

Next, for the trajectory optimization we chose the positive definite matrix for the

Lyapunov function to be S0 = diag{1, 11.1}, exponential convergence rate α = 0.9,

and the region of attraction (ROA) to be (xi − x0)TS0(xi − x0) = 1. These are design

variables and the rationale for these choices is as follows: The S0 in combination with

the region of attraction (xi − x0)TS0(xi − x0) = 1 ensures that speed variations within

±1 m/s and height variation ±0.3 m may be stabilized. The choice for α determines

how fast the initial condition at the apex decays to the periodic motion. For α = 0.9, all

initial conditions would reduce by a factor of 90%.

14 Control policies for legged robots

We use the energy metric called the Mechanical Cost Of Transport (MCOT) defined

as energy used per unit weight per unit distance travelled

MCOT = MCOTk + MCOTb + MCOTt

= Ek

mgD
+ Eb

mgD
+ Et

mgD

=

∫
|k(`0−`) ˙̀|dt
mgD

+

∫
|Pb

˙̀|dt
mgD

+

∫
|Pt

˙̀|dt
mgD

(12)

where |x| is the absolute value of x, D is the step length, and ˙̀ = (x−xc)ẋ+yẏ

`
. The absolute

value is a non-smooth function of its argument, so we smooth it using square root

smoothing.25 That is, |x| =
√
x2 + ε2 where ε is a small number (we set ε = 0.01).

Finally, the optimization problem given by Eqns. 6 - 8 is solved from initial conditions

sampled on the region of attraction and described in detail in Sec. 4.2.

4.2. Control/State tabulation

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

-0.1418
-0.1157

-0.0897

-0.0637

0.0142

0.0402

0.0662

-0
.0

11
7

-0
.0

37
7

0.0923

velocity in x-direction (m/s)

ap
ex

 h
ei

gh
t (

m
)

1000
1500

2000
2500 3000

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

500
0

velocity in x-direction (m/s)

ap
ex

 h
ei

gh
t (

m
)

10002000300040005000

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0

velocity in x-direction (m/s)

ap
ex

 h
ei

gh
t (

m
)

(b) Control of constant braking force, (c) Control of constant thrust force,

Pt = 0
Pb = 0

(a) Control of foot placement, θ

Pb Pt

Fig. 5. Contour plots for control actions as a function of horizontal velocity and apex height:
(a) foot placement angle; (b) constant braking force in stance phase; and (c) constant thrust force in the
restitution phase.

We generated 451 data points within the ellipse given by (xi − x0)TS0(xi − x0) =

1 (see Sec. 4.2) and performed the trajectory optimization for each sampled data

Control policies for legged robots 15

0.25
0.3

0.35

0.4

0.50.5

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0.45

velocity in x-direction (m/s)

ap
ex

 h
ei

gh
t (

m
)

0.020.040.060.080.10.120.140.16

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

velocity in x-direction (m/s)

ap
ex

 h
ei

gh
t (

m
)

0.18

0.02
0.04

0.06 0.08
0.1

0.12
0.14

0.16
0.18

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

velocity in x-direction (m/s)

ap
ex

 h
ei

gh
t (

m
)

0.1261 0.1751

0.2240

0.2729

0.3219

0.3708

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0.4198

0.3
70

8

0.
32

19

0.46870.4198

velocity in x-direction (m/s)

ap
ex

 h
ei

gh
t (

m
)

(a) Mech. Cost of Transport, MCOT (b) Mech. Cost of Transport due to foot placement, MCOT

(c) Mech. Cost of Transport due to braking force, MCOTb (d) Mech. Cost of Transport due to thrust force, MCOTt

= 0MCOTb

= 0MCOTt

k

Fig. 6. Contour plots for MCOT function of horizontal velocity and apex height: Mechanical
Cost Of Transport MCOT (a) total, (b) due to springy leg force k and foot placement angle θ, (c) due
to braking force Pb, and (d) due to thrust force Pt.

point (see Sec. 3.2.2). For the trajectory optimization, we recast the problem as a

parameter optimization problem on the control actions and used a single shooting

method to evaluate the cost function and system state at the end of a single step.

The parameter optimization problem was solved using constrained optimization software

called SNOPT,26 which is based on solving sequential quadratic programs. The total

optimization time for 451 initial conditions was 131 minutes on a laptop (circa 2012).

Thus, it took about 17 seconds for each optimization to complete.

The controls/state combinations are tabulated for further processing, but are presented

here as plots. Figure 5 shows the three control actions as a function of apex state,

the height y and the horizontal velocity ẋ. The total energy at the apex is given by

TEi = 0.5m(ẋi)2 +mgyi. The corresponding value for the periodic motion is given by

TE0 = 0.5m(ẋ0)2 +mgy0. Next, we find the total energy curve corresponding to the

fixed point (shown as the dashed black line) by solving for ẋi and yi on the curve TE0 =

0.5m(ẋi)2 +mgyi. This curve divides the ellipsoids into two halves: top right half has

higher total energy than the nominal, TEi > TE0, (where i is an initial condition in the

top right half); and bottom left half, has lower total energy than the nominal, TEi < TE0.

16 Control policies for legged robots

Thus for top-right half the braking force Pb is non zero and serves to brake or extract

energy from the system. Similarly, for the bottom left half the control strategy is to apply

a constant thrust force to add energy to the system. The foot placement angle maintains

the total energy of the system, but converts the potential energy to the kinetic energy and

vice versa. The three control actions perform three distinct roles: foot placement cannot

change the total energy, but can convert the potential energy to the kinetic energy and

vice versa, the braking force can only decrease the total energy, and thrust force can

only increase the total energy. A detailed analysis of how these separate control actions

combine to increase the region of attraction is provided elsewhere27.

Figure 6 shows the associated Mechanical Cost Of Transport (MCOT) (see Eqn. 12)

for individual control actions and the total. Figure 6 (a) shows the total MCOT. The

total MCOT for the fixed point (shown by the + sign) is 0.39. The MCOT is mostly flat

along the x-axis or the horizontal velocity axis, but increases monotonically along the

y-axis or the vertical height axis. Figure 6 (b) - (d) plots the contribution of individual

control actions while (a) is the sum of (b), (c), and (d).

4.3. Finding control policies and verification

Next, we find a control policy (uk = fk(x
i), one for each control action k) from the

tabulated data Sec. 4.2. The rationale is that such a control policy offers a compact

representation of the controls and is easier to store for hardware implementation.

We use the observation from Fig. 5 that we can segregate force control (Pb and Pt)

based on the location of the initial condition and the total energy. We have the following

three parameterizations in the increasing level of complexity (as given by the number of

parameters).

Control policies for legged robots 17

Linear policy: The linear policy has 9 parameters as shown below.

θi = a0 + a1∆y + a2∆ẋ

P i
b =

0 TEi ≤ TE0

b0 + b1∆y + b2∆ẋ otherwise

P i
t =

0 TEi ≥ TE0

c0 + c1∆y + c2∆ẋ otherwise

Quadratic policy: The quadratic policy has 18 parameters as shown below.

θi = a0 + a1∆y + a2∆ẋ+ a3(∆y)2 + a4(∆ẋ)2 + a5∆y∆ẋ

P i
b =

0 TEi ≤ TE0

b0 + b1∆y + b2∆ẋ+ b3(∆y)2 + b4(∆ẋ)2 + b5∆y∆ẋ otherwise

P i
t =

0 TEi ≥ TE0

c0 + c1∆y + c2∆ẋ+ c3(∆y)2 + c4(∆ẋ)2 + c5∆y∆ẋ otherwise

Neural network policy: Each neural network in the policy has 12 hidden layers and the

total parameters are 484.

θ = Neural Net 1

P i
b =

0 TEi ≤ TE0

Neural Net 2 otherwise

P i
t =

0 TEi ≥ TE0

Neural Net 3 otherwise

18 Control policies for legged robots

where ∆y = yi − y0, ∆ẋ = ẋi − ẋ0, a’s, b’s, and c’s are all constants. The constants

were fit using the data from Sec. 4.2. The linear and quadratic policies were fit using

non-linear least squares function lsqnonlin in MATLAB and the neural network policy

was trained using Levenberg-Marquardt using the Deep Learning Toolbox in MATLAB.

0-0.1 0.1-0.2 0.2-0.3 0.3-
0

20

40

60

80

100

0-0.1 0.1-0.2 0.2-0.3 0.3-
0

20

40

60

80

100

0-0.1 0.1-0.2 0.2-0.3 0.3-
0

20

40

60

80

100

In
iti

al
 c

on
di

tio
n

at
 s

te
p

0
(%

)

(a) (b) (c)

52

16
10

22

73

22

5 <1

84

15

<1 0

Lyapunov function, ∆
i

xV
+

()
1

Lyapunov function, ∆
i

xV
+

()
1

Lyapunov function, ∆
i

xV
+

()
1

Fig. 7. Verification for different control policies. A histogram showing Lyapunov function after

one step (V (∆xi+1)) for randomly chosen initial conditions (xi) in the region of attraction. Each figure
represents a different fit between control actions and initial conditions at the apex. The fits are based
on: (a) linear, (b) quadratic, and (c) neural networks.

4.3.1. Verification. Using the three control fits discussed above, we do the verification as

follows. We choose about 1500 initial conditions inside the region of attraction V (∆xi) ≤

1 (note that our fit is based on only 451 points). Next, for each of the initial conditions, we

did a forward simulation for one step using each control policy. We plotted the histogram

of the Lyapunov function after one step for each of the three fits as shown in Fig. 7. We

have also indicated the percentages above each bar of the histogram. It can be seen

that 52%, 73%, 84% of the initial conditions are in the range 0 < V (∆xi+1) < 0.1 for

the linear, quadratic, and neural network fit respectively. Also, almost 99% of initial

conditions are within the range 0 < V (∆xi+1) < 0.3 for the quadratic fit and within the

range 0 < V (∆xi+1) < 0.2 for the neural network fit. These results indicate that the

neural network provides the best fit for the data followed by the quadratic fit and finally,

the linear fit.

4.3.2. Robustness. We choose the quadratic control policy for additional robustness

checks. The rationale behind using the quadratic policy over the neural network was

that the former uses a few parameters while providing a comparable fit as demonstrated

Control policies for legged robots 19

0-0.1 0.1-0.2 0.2-0.3 0.3-
0

10

20

30

40

50

60

70

80

90

100

In
iti

al
 c

on
di

tio
n

at
 s

te
p

0
(%

)
(a) (b)

Lyapunov function, ∆
i

xV
+

()
n

Lyapunov function, ∆
i

xV
+

()
n

0-0.1 0.1-0.2 0.2-0.3 0.3-
0

10

20

30

40

50

60

70

80

90

100
step n=1
step n=2
step n=3
step n=4
step n=5

step n=1
step n=2
step n=3
step n=4
step n=5

Fig. 8. Effect of simulating the system with damping. Lyapunov function V (∆xi+n) for n =
1, 2, 3, 4, 5 steps starting from randomly chosen initial conditions within the region of attraction for
damping factor of (a) cv = 100 (b) cv = 200.

in Fig. 7. To check robustness we looked into effects such as unmodeled dynamics, noisy

sensors/actuators, and external disturbances. These are discussed next.

To check the robustness to unmodeled dynamics, we added a damping force (Fv =

−cv ˙̀) in addition to the spring force on the stance leg. Then we simulated the system

for 1414 randomly chosen points in the region of attraction, (xi − x0)TS0(xi − x0) ≤ 1.

Figure 8 shows the Lyapunov function (averaged over the 1414 simulations) for 5

consecutive steps for two damping constants (a) cv = 100 Ns/m and (b) cv = 200 Ns/m.

These damping values have the effect of reducing the total energy of the periodic motion

at the next step by 6% and 10% respectively. It can be seen that for cv = 100, all

initial conditions decay to and stay within the range V (∆xi+2) ≤ 0.1, that is, in 2 steps.

However, when damping constant is doubled to cv = 200, all initial conditions are within

the range V (∆xi+2) ≤ 0.3.

We did stochastic simulations to ascertain robustness to several other factors: noisy

actuators (foot placement angle and stance forces), noisy sensors (apex height and

horizontal velocity), and external disturbance (step change in height at touchdown).

We consider each of these 5 factors separately. That is, only one factor was varied by

keeping the other four fixed to the nominal value. For each factor, we choose a standard

deviation σd (where d = θ, P, y, ẋ, h are foot placement angle, stance forces, apex height,

20 Control policies for legged robots

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

P
P

b

t

P
P

b

t

P
P

b

t

P
P

b

t

0

400

800

1200

1600

2000

0

0

0.2

0.4

0.6

0.8

1

0.05

0.1

0.15

0.2

0.25

0.3

0

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.31 0.32 0.33 0.34 0.35 0.36 0.37 0 400 800 1200 1600

0

(a)

(b)

(c)

(d)

(e)

Number of steps Mean foot placement (rad) Mean push off (N)

Fo
ot

 p
la

ce
m

en
t,

 (

ra
d)

Pu
sh

 -o
ff,

(N
)

Ap
ex

 h
or

iz
on

ta
l

ve
lo

ci
ty

,

(m
/s

)
Ap

ex
 h

ei
gh

t,

(m
)

St
ep

 h
ei

gh
t,

 (

m
)

P
P

b

t

σ h
σ y

σ P
σ x

.
θσ

Fig. 9. Robustness to noisy actuators (a-b), noisy sensors (c-d) and external disturbance
(e). Each row corresponds to a single parameter and the corresponding effect on the number of steps
traversed (column 1), foot placement angle (column 2), and force (column 3). The parameters are (a)
noise in foot placement angle, (b) noise in control force, (c) noise in apex horizontal velocity measurement,
(d) noise in apex height measurement, and (e) step change in height.

apex horizontal speed, step disturbance, respectively). The standard deviation was varied

from zero to a maximum value in certain increments appropriate to the specific factor.

For a given σd, we created 10 runs, each of 100 steps. In each of these runs, the noise or

disturbance was applied every step. For sensor noise, foot placement control actuation

Control policies for legged robots 21

noise, and step height disturbance we used uniform random distribution {−σd, σd} and

for stance force noise we used uniform distribution {0, σd} to create perturbations over

the nominal values for each of these parameters. For each of these runs, the hopper

started at the same initial state, x0.

Figure 9 shows the results for the stochastic simulations. Each row corresponds to a

single factor. The column corresponds (from left to right) the number of steps successfully

taken, the average foot placement angle, and the average push-off force. The robustness

is best explained using the first column, the number of steps successfully taken: the

maximum deviation σd for which the hopper can take average 100 steps (the maximum

number of steps simulated) indicates no failure. This is achieved for foot placement angle

σθ ≈ 0.04 rad = 2.3◦ (about 11% of nominal θ), for stance force σP ≈ 800 N, for apex

horizontal velocity σẋ ≈ 0.4 m/s (about 8% of the nominal apex horizontal velocity), for

apex height σy ≈ 0.12 m (about 9.2% of the nominal apex height), and step disturbance

σh < 0.01 m = 1 cm. The control actions θ (column 2) and stance forces Pb and Pt

(column 3) for values that indicate no failure (that is, steps traversed is 100) provide

an indication of stabilization strategies. In particular, for increasing σ for push-off (row

2), apex horizontal speed (row 3), and apex height (row 4), the foot placement angle

decreases, but the push-off force increases to stabilize the system. However, increasing σ

for foot placement angle (row 1) does not change either the push-off or foot placement

angle (column 2 and 3) thus indicating that the system relies on the stability properties

of the nominal gait for stabilization. Finally, there is no clear trend for an increase in σ

for step height (row 5) because of the low tolerance for rejecting step height disturbances.

Our main conclusion is that the system is most robust to noisy push-off forces, moderately

robust to noise in apex height and velocity and to noise in foot placement angle, and

least robust to step height disturbance.

Figure 10 gives a better understanding of the evolution of the Lyapunov function across

multiple steps for an increasing standard deviation for each of the five parameters. To

generate each plot, we started the hopper from the same initial condition, but a different

22 Control policies for legged robots

σ based on the parameter that we considered, and simulated the system for multiple

steps. Each dot in the figure represents the Lyapunov function at subsequent steps. The

light gray ellipse is the region of attraction (that is, (xi − x0)TS0(xi − x0) ≤ 1) and the

dark gray ellipse in the middle corresponds to (xi − x0)TS0(xi − x0) ≤ 0.1 or the region

inside which all initial conditions will decay for a perfect model, perfect sensors, and

no external disturbances. The columns are arranged in the increasing order of σ from

left to right; we chose small, medium, and large model uncertainty/disturbance that the

controller is able to sustain. It can be seen that as the deviation σ increases the Lyapunov

function over multiple steps stays within the region of attraction, but not inside the ellipse

with a boundary defined by 0.1. The effect is most prolonged for the large disturbance

(rightmost column), especially for the apex height variation, where the hopper is on the

verge of moving out of the assumed region of attraction, but not necessarily falling.

5. Discussion

In this paper, we have presented a sampling-based framework to find control policies for

an assumed region of attraction and demonstrated the approach on a model of hopping.

The methodology was as follows. We performed a coarse-sampling of the initial conditions

at the Poincaré section and used trajectory optimization on each initial condition to

find control actions (e.g., gain, amplitudes, set-points) that ensured a reduction of a

suitably defined Lyapunov function after a single step. The result was a tabulation of the

initial conditions and the corresponding control actions. We fitted each control action

as a function of the initial conditions, assuming various functional representations (e.g.,

linear, quadratic, neural network) to find the control policy. Finally, we verified the

control policy on a finely sampled set of initial conditions and did additional robustness

checks.

The traditional formal control approach started by assuming a control policy (e.g.,

linear quadratic regulator, LQR) and then found the largest region of attraction (e.g.,

using sum-of-squares optimization). Our sampling-based approach worked in the reverse:

Control policies for legged robots 23

0.6

0.8

1

1.2

1.4

1.6

1.8

1 1 1

0.6

0.8

1

1.2

1.4

1.6

1.8

1 11

0.6

0.8

1

1.2

1.4

1.6

1.8

1 11

0.6

0.8

1

1.2

1.4

1.6

1.8

Ap
ex

 H
ei

gh
t (

m
)

1 1 1

Ap
ex

 H
ei

gh
t (

m
)

0.6

0.8

1

1.2

1.4

1.6

1.8

1

4 4.4 4.8 5.2 5.6 6

1 1

4 4.4 4.8 5.2 5.6 6 4 4.4 4.8 5.2 5.6 6

Ap
ex

 H
ei

gh
t (

m
)

Ap
ex

 H
ei

gh
t (

m
)

Ap
ex

 H
ei

gh
t (

m
)

Ap
ex

 H
ei

gh
t (

m
)

Apex Horizontal Velocity (m/s) Apex Horizontal Velocity (m/s) Apex Horizontal Velocity (m/s)

(e)

(d)

(c)

(b)

(a)

Initial
State

Initial
State

Initial
State

Initial
State

Initial
State

Initial
State

Initial
State

Initial
State

Initial
State

Initial
State

Initial
State

Initial
State

Initial
State

Initial
State

Initial
State

Fig. 10. Effect of size of standard deviation (σ) of various parameters to the evolution
of the Lyapunov function. The hopper starts from the same initial conditions for all runs. Each
row corresponds to a specific external parameter and each column corresponds to increasing standard
deviation for the particular parameter. The rows and columns in that order are: (a) foot placement
control for σθ of 1◦, 2◦, and 3◦, (b) push-off control for σP of 500, 1000, and 1500 all in N, (c) apex
velocity sensor for σẋ of 0.1, 0.25, and 0.5 all in m/s, (d) apex height sensor for σy of 5, 10, 20 all in cm,
(e) step height disturbance for σh of 2, 5, and 8 all in cm.

we started by assuming a region of attraction and then found the control policy using

extensive simulations and regression. The formal control approach leads to a simple policy

(e.g., the linear policy) at the expense of the possibility of generating a small region of

24 Control policies for legged robots

attraction, while our approach guarantees a large region of attraction at the expense of

more complicated control policy. For linear systems, the formal control approach based on

a linear control policy would be more effective computation- and performance-wise, but

for nonlinear systems where a simple linear controller could potentially produce a small

region of attraction, our method would potentially lead to a larger region of attraction.

Another major difference between our and prior work is in the way we define the

region of attraction. Tedrake2 and Manchester22 considered the region of attraction along

the trajectory while we considered the region of attraction at the Poincaré section. In

these prior works, the system was linearized about the trajectory and the time varying

LQR controller was used for tracking purposes. The region of attraction was estimated

by finding multiple Lyapunov functions along the trajectory using the sum-of-squares

optimization guaranteeing local stability along the trajectory. In our case, there was a

single Lyapunov function at the Poincaré section and gave the region of attraction for

orbital or step-to-step stability for the nominal cyclic motion. In contrast to the trajectory

tracking in the prior work, we solved a computationally simpler regulation problem. In

other words, using the Poincaré map-based Lyapunov function, we created a discrete

controller that operates in a step-to-step fashion, a common practice in the control of

machines exhibiting periodic motion.1

Our approach blended control theory and machine learning; more specifically, control

theory-based stability metrics such as the control Lyapunov function and machine

learning-based methods such as sampling and regression (polynomials and deep neural

networks) for designing control policies. In this regard, it is important to note that

control theory approaches based on the sum-of-squares optimization2 may only work

with polynomial model and control policies. In contrast, our method worked with generic

models, including black-box models.

The control actions and Lyapunov function are the designer’s choices that affected the

final outcomes. For the hopper, our choice of control actions was foot placement angle,

braking force, and thrust force while the Lyapunov function was an ellipse. Our choice

Control policies for legged robots 25

of control actions not only led to a large region of attraction, but it also led to further

simplification as only two of the three control actions were needed to stabilize the system

based on the system energy. We chose a quadratic Lyapunov function with principal axes

along the speed (x-axis) and height (y-axis) and this allowed us to stabilize a relatively

wide range of horizontal speeds (range of ±1 m/s) for the same apex height, the rationale

being that regulating the speed is one of the goals of legged locomotion in the presence

of disturbances. In comparison, the work by Heim and Sprowitz12 used a single control

action, the foot placement angle, which limited the region of attraction to a relatively

small area.

We have two comments about our chosen region of attraction. One, we chose our region

of attraction to be (xi − x0)TS0(xi − x0) ≤ c, with c = 1. The choice for c is arbitrary.

In principle one could choose a large value of c, perhaps encompassing the entire state

space. Then do optimization for sampled points in the entire space followed by regression

to fit a control policy (ui = f(xi)). We hypothesize that the resulting control policy will

be highly non-linear and could potentially need a large number of free parameters to

describe it adequately. Often a simple control policy (e.g., quadratic or neural network

with few parameters) is ideal. Second, although we chose the region of attraction c = 1

and found the control policy for that region, the actual region of attraction is likely

much larger. It would be fairly straightforward to find the actual region of attraction by

doing additional simulations over larger level sets c > 1. After finding the actual region

of attraction, one can repeat the control policy evaluation for the new c and repeat the

process until no further expansion of the region of attraction is possible.

We advocated offline trajectory optimization followed by online implementation.

The average time for the trajectory optimization for the simple model is about 17

seconds (circa 2012 laptop), which is too slow for online implementation. Since the

trajectory optimization is done for a range of initial conditions, the resulting data (initial

conditions and corresponding control actions) may be saved as a lookup table for online

implementation. This simple strategy worked for a few regions of attraction, but as the

26 Control policies for legged robots

number of regions of attraction grows (e.g., for different gaits and fixed points and as

the system dimensions scale up), the lookup table might be too large. Thus, we advocate

mining the data to find a simple functional representation, a control policy of the form,

u = f(x), which is easier to store and use for real-time control.

Our work has several limitations that we list next. Our sampling-based method is

computationally expensive and may not scale well for a high dimensional system (e.g.,

quadrupeds, humanoids). The challenge then is to find either simple models (templates

of complex robots known as anchors17) with a small number of inputs or find clever

control approaches to reduce the system dimensionality (e.g., hybrid zero dynamics28).

Another issue is that the Lyapunov function and the control actions are design choices

and may need trial-and-error to arrive at good choices. Our thumb rule for control actions

is to have ones that have distinct effects on the system dynamics. For example, in the

hopping model, the thrust and braking forces allowed us to modify the total system

energy while the foot placement angle allowed speed and/or height regulation without

affecting system energy. Thus, there were multiple combinations that regulated the height

and speed (redundancy). Our approach of doing step-to-step control at a higher level, a

type of low bandwidth control, is susceptible to failure for large disturbances. Specifically,

we measure the system state at the Poincaré section, then choose control actions that

remain fixed for the entire step till the next Poincaré section. However, if there are large

disturbances between steps, then the system might fail before it reaches the next Poincaré

section. One suggestion for circumventing this issue is to have multiple sections along

the trajectory and use those sections to modify the control actions more than once per

step. Our choice of control policies affected our results. For example, the linear fit is the

simplest control policy, but does not give adequate convergence rate when we do the

verification; while the neural network with about 10 times more parameters is complex

but gives good convergence rates. Finally, we have not considered actuator limits. When

the actuator limits are reached, it may not be possible to stabilize the system in a single

Control policies for legged robots 27

step and 2 or more steps might be needed. It has been shown that with realistic actuator

limits, it takes about 2 steps to reach any target speed from any other speed.29

6. Conclusion

The paper presented a sampling-based approach to find non-linear control policies for

candidate Lyapunov functions defined on the Poincaré section and assumed region

of attraction that ensures exponential convergence of the Lyapunov function between

steps. The approach was demonstrated on a model of hopping. We assumed a quadratic

Lyapunov function, then using trajectory optimization and the exponential convergence

of the Lyapunov function, we tabulated the control actions as a function of the initial

conditions. Then, using regression and deep learning we approximated the tabulated data

to find a control policy. Finally, we verified the control policy using a finer grid and did

robustness checks by varying the model parameters, introducing sensor and actuator

noise, and disturbances. We conclude that the proposed approach can successfully

find control policies (usually nonlinear) for the assumed region of attraction. This is

significant, especially for non-linear systems where past approaches of assuming a linear

control policy lead to a relatively small region of attraction.

Acknowledgements

This work was supported by NSF grants 1566463 and 1946282 to Pranav Bhounsule.

References

1. D. Hobbelen and M. Wisse, “Limit Cycle Walking,” In: Humanoid Robots Human-like Machines

(2007) pp. 277–294.

2. R. Tedrake, “LQR-Trees: Feedback Motion Planning on Sparse Randomized Trees,” In: Proceedings

of Robotics Science and Systems 2003.

3. S. Prajna, A. Papachristodoulou, and P. A. Parrilo, “Introducing Sostools: A General Purpose Sum

of Squares Programming Solver,” In: Proceedings of the the 41st IEEE Conference on RDecision and

Control (2002) pp. 741–746.

28 Control policies for legged robots

4. P. A. Bhounsule, A. Zamani, and J. Pusey, “Switching Between Limit Cycles in a Model of Running

Using Exponentially Stabilizing Discrete Control Lyapunov Function,” In: Annual American Control

Conference (2018) pp. 3714–3719.

5. A. Zamani, J. D. Galloway II, and P. A. Bhounsule, “Feedback motion planning of legged robots by

composing orbital lyapunov functions using rapidly-exploring random trees,” in IEEE International

Conference on Robotics and Automation, IEEE, 2019.

6. T. McGeer, “Passive dynamic walking,” Int. J. Robot. Res. 9(2), 62–82 (1990).

7. T. McGeer, “Passive Dynamic Biped Catalogue,” In: Proceedings of the 2nd International Symposium

on Experimental Robotics (1991) pp. 465–490.

8. M. Garcia, A. Chatterjee, A. Ruina and M. Coleman, “The simplest walking model: stability,

complexity, and scaling,” ASME J. Biomech. Eng. 120, 281–288 (1998).

9. S. Strogatz, Nonlinear Dynamics and Chaos (Addison-Wesley Reading, 1994).

10. A. Schwab and M. Wisse, “Basin of Attraction of the Simplest Walking Model,” In: Proceedings of

the ASME design engineering technical conference (2001) pp. 531–539.

11. C. S. Hsu, Cell-to-cell Mapping: A Method of Global Analysis for Nonlinear Systems (Springer Science

& Business Media, 2013).

12. S. Heim and A. Spröwitz, “Beyond basins of attraction: evaluating robustness of natural dynamics,”

arXiv preprint arXiv:1806.08081 (2018).

13. P.-B. Wieber, “Viability and Predictive Control for Safe Locomotion,” In: IEEE/RSJ International

Conference on Intelligent Robots and Systems (2008) pp. 1103–1108.

14. J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture Point: A Step Toward Humanoid Push

Recovery,” In: 6th IEEE-RAS International Conference on Humanoid Robots (2006) pp. 200–207.

15. J. Pratt, T. Koolen, T. D. Boer, J. Rebula, S. Cotton, J. Carff, M. Johnson, and P. Neuhaus,

“Capturability-based analysis and control of legged locomotion. part 2: Application to m2v2, a lower-

body humanoid,” Int. J. Robot. Res. 31(10), 1117–1133 (2012).

16. P. Zaytsev, W. Wolfslag, and A. Ruina, “The boundaries of walking stability: viability and

controllability of simple models,” IEEE Trans. Robot. 34(2), 336–352 (2018).

17. D. Koditschek and J. Robert, “Templates and anchors: Neuromechanical hypotheses of legged

locomotion on land,” J. Exp. Biol. 202(23), 3325–3332 (1999).

18. E. C. Whitman, Coordination of Multiple Dynamic Programming Policies for Control of

BipedalWalking (PhD thesis, Carnegie Mellon University, 2013).

19. T. Mandersloot, M. Wisse, and C. G. Atkeson, “Controlling Velocity in Bipedal Walking: A Dynamic

Programming Approach,” In: 6th IEEE-RAS International Conference on Humanoid Robots (2006)

pp. 124–130.

Control policies for legged robots 29

20. M. H. Raibert and F. C. Wimberly, “Tabular control of balance in a dynamic legged system,” IEEE

Trans. Syst., Man, Cybern. 1(2), 334–339 (1984).

21. X. Da, R. Hartley, and J. W. Grizzle, “Supervised Learning for Stabilizing Underactuated Bipedal

Robot Locomotion, with Outdoor Experiments on the Wave Field,” In: Proceedings of the IEEE

International Conference on Robotics and Automation (2017) pp. 3476–3483.

22. I. R. Manchester, M. M. Tobenkin, M. Levashov, and R. Tedrake, “Regions of Attraction for Hybrid

Limit Cycles of Walking Robots,”In: Proceedings of the 18th World Congress The International

Federation of Automatic Control (2011) pp. 5801–5806.

23. P. A. Bhounsule and A. Zamani, “A discrete control lyapunov function for exponential orbital

stabilization of the simplest walker,” J. Mech. Robot. 9(5), 051011–8 (2017).

24. J. Betts, “Survey of numerical methods for trajectory optimization,” J. Guid. Control Dyn. 21(2),

193–207 (1198).

25. M. Srinivasan, Why Walk and Run: Energetic Costs and Energetic Optimality in Simple Mechanics-

based Models of a Bipedal Animal (PhD thesis, Cornell University, 2006).

26. P. Gill, W. Murray, and M. Saunders, “SNOPT: An SQP algorithm for large-scale constrained

optimization,” SIAM J. Optim 12(4), 979–1006 (2002).

27. A. Zamani and P. Bhounsule, “Control synergies for rapid stabilization and enlarged region of

attraction for a model of hopping,” Biomimetics 3(3), 1–13 (2018).

28. J. Grizzle, G. Abba, and F. Plestan, “Asymptotically stable walking for biped robots: Analysis via

systems with impulse effects,” IEEE Trans. Autom. Control 46(1), 51–64 (2001).

29. P. Zaytsev, S. J. Hasaneini, and A. Ruina, “Two steps is enough: no need to plan far ahead for walking

balance,” in Robotics and Automation (ICRA), 2015 IEEE International Conference on, pp. 6295–

6300, IEEE, 2015.

