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ABSTRACT
Legged robots with point or small feet are nearly impossi-

ble to control instantaneously but are controllable over the time
scale of one or more steps, also known as step-to-step control.
Previous approaches achieve step-to-step control using optimiza-
tion by (1) using the exact model obtained by integrating the
equations of motion, or (2) using a linear approximation of the
step-to-step dynamics. The former provides a large region of sta-
bility at the expense of a high computational cost while the latter
is computationally cheap but offers limited region of stability.
Our method combines the advantages of both. First, we gener-
ate input/output data by simulating a single step. Second, the
input/output data is curve fitted using a regression model to get
a closed-form approximation of the step-to-step dynamics. We
do this model identification offline. Next, we use the regression
model for online optimal control. Here, using the spring-load in-
verted pendulum model of hopping, we show that both paramet-
ric (polynomial and neural network) and non-parametric (gaus-
sian process regression) approximations can adequately model
the step-to-step dynamics. We then show this approach can sta-
bilize a wide range of initial conditions fast enough to enable
real-time control. Our results suggest that closed-form approx-
imation of the step-to-step dynamics provides a simple accurate
model for fast optimal control of legged robots.

∗Address all correspondence to this author.
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FIGURE 1. Dynamical systems tools use for analysis: (a) Non-
periodic motion: An initial condition xi chosen at the Poincaré section
maps to a new state xi+1 after one step leading to non-periodic motion.
(b) Periodic motion: An initial condition x0 maps onto itself after one
step leading to periodic motion, i.e., the trajectory is closed.

1 Introduction
Legged robots with point or small feet are under-actuated

systems (i.e., the number of degrees of freedom exceeds the num-
ber of actuators on the degrees of freedom). Because of under-
actuation, such systems are nearly impossible to control instan-
taneously (e.g., balancing over the upright position when per-
turbed). However, it is possible to control these systems over a
finite time horizon, typically of the order of one step [1]. For ex-
ample, a push given to a robot with point feet may be corrected
by taking a step in the direction of the push, thus achieving bal-
ance control over one step [2]. We call this form of control as
step-to-step control in this paper.
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FIGURE 2. Overview of our approach: (a) For a range of input states (xi at the Poincaré section and parameterized controls ui over the step, we
use the forward simulation (i.e., integrating the equations of motion) to generate output state at the Poincaré section at the next step xi+1. (b) Using
an assumed regression model, we fit an approximate function to the Poincaré map F, i.e., xi+1 = F(xi,ui), shown by the gray plane. (c) Finally, we
optimize a suitable cost function with the assumed regression model to obtain the optimal control ui. Note that (a), (b) are done offline using a simulator
and (c) is done online on the robot.

As shown in Fig. 1 (a), the main idea behind step-to-step
control is based on how an initial state at step i, xi, at a suit-
able instant in the locomotion cycle (also known as the Poincaré
section) and parameterized control at the step ui, influences the
state at the next step i+ 1, xi+1. As shown in Fig. 1 (b), certain
states x0 and controls u0 lead to periodic motion (more details
in Sec. 3). In particular, there a function F that maps the states,
controls at step i with the state at the next step i+1. The neces-
sary relation is xi+1 = F(xi,ui). Thus, for a given xi, the goal is
to choose ui to control the state at the next step xi+1.

There are two widely used methods for step-to-step control.
(1) Linearize the step-to-step dynamics (i.e., F) around the pe-
riodic solution, known as the limit cycle [3, 4], and use this lin-
ear approximation for control using a discrete linear quadratic
regulator [5–7]. (2) Use trajectory optimization by using the
non-linear map F to find the optimal control input [8]. The first
method is computationally simple as it is based on the lineariza-
tion of F, but works well only for small perturbations around the
limit cycle [9]. The second method works well for large pertur-
bations but is computationally expensive as it requires repeated
integration of the equations over a step to obtain F (as closed
form solutions are not available for F). In this work, we blend
both these methods, thus combining their advantages and offset-
ting limitations of either.

Our approach has three phases. First, as shown in Fig. 2 (a),
we choose a range of initial states on the Poincaré section (xi) and
a range of parameters that make up the parameterized controller
(ui). Next, we use the forward simulation of the system given
by xi+1 = F(xi,ui), to obtain the numerical value for the system
state at the next step xi+1. Some of these inputs will lead to a
failure, i.e., the state at the next step xi+1 is not defined. We
ignore these initial conditions in our curve fitting. Second, as
shown in Fig. 2 (b), using the generated data, we fit a regression
model for F as shown by the gray plane. In this paper, we try
three regression models: (1) a quadratic model; (2) a gaussian
process regression model; and (3) a neural network model. Third,

as shown in Fig. 2 (c), we use optimization to find control ui
using the closed-form approximate model F. We perform the first
two phases offline and the third phase online. The availability of
a closed-form model F avoids time consuming integration (used
to evaluate F), enabling fast optimization.

The novelty of the paper is the idea that closed-form ap-
proximations of the step-to-step map, although of low fidelity
(e.g., usually with an accuracy of 85% or more), can stabilize
the system for a relatively wide range of state perturbations. In
a broader sense, we can use the method to generate closed-form
approximation for complex models (e.g., quadruped, humanoid)
and in the presence of nonlinearities (e.g., Coriolis acceleration)
and dissipative forces (e.g., viscous or Coulomb friction).

2 Background and related Work
Raibert and colleagues built the very first dynamically bal-

ancing single-legged hopping robot [10]. Initially, they used of-
fline computations to create controllers and implemented them
using look-up tables [11]. Later on, they found simple heuris-
tics to achieve step-to-step balance control by using three de-
coupled controllers in tandem: foot placement to regulate hori-
zontal speed, axial thrust for height control, and hip torque dur-
ing ground contact to stabilize the torso. Raibert et al. then
demonstrated the same ideas can control biped and quadruped
robots [10].

McGeer [12] formalized the step-to-step control within the
context of dynamical systems theory. First, McGeer demon-
strated that a design that resembles a human’s lower body when
suitably tuned for mass distribution and geometry can walk down
a shallow slope with no control. Second, McGeer interpreted the
resulting periodic motion as a limit cycle and used the eigenval-
ues of the linearization of the step-to-step map, also known as the
Poincaré map (i.e., the function that maps the initial conditions
from one step at a particular instant in the locomotion cycle to
the same instant at the next step) to analyze the stability of the
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limit cycle [13]. Finally, McGeer showed that by using a linear
controller based on the step-to-step map (a mapping from initial
conditions from one step to the next), it is possible to increase
the robustness of the passive (no control) limit cycle [14]

Here, we consider the spring-loaded inverted pendulum
(SLIP) model of hopping. The model comprises a point mass
body and a springy leg. Geyer et al. [15] showed that the model
describes the mechanics of walking and running in humans. In a
pure SLIP model, energy is conserved and the only control vari-
able is the foot placement angle during the transition from flight
to stance. Seyfarth et al. [16] showed that by controlling the foot
placement angle at every step it is possible to achieve a wide
range of stable solutions. A slight backward motion of the swing
leg (also known as swing leg retraction) just before touchdown
improves robustness to changes in terrain height [17], but for
walking down over steep inclines leg protraction provides stabil-
ity [18]. To further increase the range of stable initial conditions
in the SLIP model, there needs to be a control mechanism to add
or remove energy from the system. These may include changing
the leg length during stance phase [19], changing the spring stiff-
ness during stance phase [20], brake and thrust forces [21], and
adding an impulse along during the stance phase [22]. However,
all these studies rely on the numerical integration of the step-to-
step map for control.

Unlike a few systems such as the point mass inverted pen-
dulum with impulsive push-off and foot placement [23] and the
rimless wheel [24] that have an exact closed-form solution for
the step-to-step map, an exact solution to the step-to-step dy-
namics of the SLIP model does not exist. However, past stud-
ies have shown that by assuming a small angular sweep and stiff
springs, it is possible to obtain a closed-form solution to the step-
to-step map for both, the conservative and non-conservative SLIP
model [25, 26]. While such approximations may capture 90% of
the dynamics [27], it is unclear if it is possible to generalize to
other complex systems (e.g., non-conservative SLIP model with
a torso [28]).

3 Methods
3.1 Poincaré section and Poincaré map

We define some preliminaries that will be used to analyze
and consequently develop controllers for legged systems. Fig-
ure 1 (a) (red solid line) shows the trajectory of the robot in state
space. We define the Poincaré section as an instant or event in
the gait (e.g., a foot-strike event occurs at the instant swinging
leg hits the ground, apex event occurs when the vertical velocity
is zero during flight phase). We choose an initial condition at the
Poincaré section at step i, xi, and trace its movement on the ap-
plication of control ui for a single step. At the Poincaré section
at step i+1, the state of the robot is xi+1. There is a function F,
known as the step-to-step map or Poincaré map that relates robot

state between steps given by

xi+1 = F(xi,ui). (1)

The trajectory between steps is not closed or xi+1 6= xi as shown
in Fig. 1 (a). Such a motion is aperiodic or non-steady state.
However, we can find a state x0 and a related control u0 such that

x0 = F(x0,u0). (2)

This motion leads to a closed trajectory as shown in Fig. 1 (b).
The resulting motion is periodic or steady-state locomotion or
also known as a limit cycle motion. The initial condition x0 is
called the fixed point of the limit cycle.

Note that, except for simple models, no analytical solutions
are known of the step-to-step map or the Poincaré map F. Hence
almost always, the map is constructed numerically by integrating
the equations of motion from a given initial condition. The inte-
gration of equations is a significant bottleneck preventing online
optimization. Thus, in this paper, we approximate this map using
a data-driven approach.

3.2 Stabilizing periodic motion
For an initial condition xi 6= x0, we need to find a control

input ui such that the system comes closer to the fixed point x0
after a single step. We list three approaches.

3.2.1 Discrete Linear Quadratic Regulator using
linearized Poincaré map: In the discrete linear quadratic
regulator, we assume a quadratic cost function (Eqn 3) and lin-
earization of the Poincaré map close to the fixed point (Eqn. 4)

minimize
ui

{
(∆xi+1)

T Q(∆xi+1)+(∆ui)
T R(∆ui)

}
(3)

∆xi+1 = A∆xi +B∆ui (4)

where (∆xi) = xi− x0, (∆ui) = ui−u0, the model comes from
the following linearizations A = ∂F

∂x

∣∣∣
(x0,u0)

and B = ∂F
∂u

∣∣∣
(x0,u0)

(obtained from numerical differentiation) and Q, R are appropri-
ately sized constant matrices that are designer choices. Note that
this is a finite time horizon discrete linear regulator unlike the
infinite horizon discrete linear regulator that has as its solution, a
constant gain matrix K such that ∆ui =−K∆xi [29].

3.2.2 Discrete Nonlinear Quadratic Regulator us-
ing an approximated Poincaré map: In the discrete non-
linear quadratic regulator problem, we assume one-step cost
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FIGURE 3. (a) Model going through a single step: The model starts in the flight phase at the apex position (vertical velocity is zero), followed
by the stance phase, and finally ending in the flight phase at the apex position of the next step. There is a linear spring along the leg that applies the
spring force F and a hip actuator (not shown) that can control the leg to the position θ with respect to the vertical before touchdown. (b) Equation
representing a single step: Phases (e.g., stance phase) are shown between arrows and events are shown above the arrows. The equation represents a
single step, step i for the model of hopping.

function (Eqn. 5) and an approximation to the Poincaré map
(Eqn 6)

minimize
ui

{
(∆xi+1)

T Q(∆xi+1)+(∆ui)
T R(∆ui)

}
(5)

xi+1 = F(xi,ui). (6)

We use MATLAB constrained optimization function fmincon to
solve the above optimization problem.

3.2.3 Benchmark controller – Discrete Nonlinear
Quadratic Regulator using true Poincaré map: We also
have a benchmark (best possible) controller that uses numerical
integration to get the exact Poincaré map F and used along with
MATLAB optimization using fmincon.

4 Model and computer simulation
4.1 Model

The model comprises a point mass m with a springy leg of
length ` (see Figure 3 (a) middle figure). The linear spring con-
stant is k and the free length of the leg is `0. The force applied
by the springy leg on the body when in contact with the ground
is Fs = k(`0− `). There is a hip actuator (not shown) that en-
ables the swing leg to swing to angle of θ to the vertical before
touchdown. Gravity vector is g and points downwards.

4.2 Equations of motion
The states of the model are {x, ẋ,y, ẏ} where x,y are the x-

and y- position of the center of mass and ẋ, ẏ are the respective
velocities. Figure 3 (a) shows the model of the hopper including
a few events (e.g., apex, touchdown) that make up a single step.
We give the complete set of events and phases in Fig. 3 (b).

The model starts at the apex for step i as shown in Fig. 3 (a)
(i) where the state vector is, {xi, ẋi,yi,0}. The model then falls
under the effect of gravity,

ẍ = 0, ÿ =−g. (7)

The model then sticks out its leg to the foot placement angle θ

which is the control parameter. Ground contact occurs when y−
`0 cos(θ) = 0. Thereafter, the ground contact interaction occurs
at touchdown as shown in Fig. 3 (a) (iii), and given by

mẍ = Fs
x− xc

`
, mÿ = Fs

y
`
−mg (8)

where xc is the x-coordinate of the foot contact point that is set at
every step when the leg makes ground contact, Fs = k(`0− `),
where ` =

√
(x− xc)2 + y2 is the instantaneous leg length. The

take-off phase occurs when the ground reaction force is zero,
k(`− `0) = 0. Thereafter, the model has a flight phase and ends
up at the next apex state, {xi+1, ẋi+1,yi+1,0} as shown in Fig. 3
(vii).

4 Copyright c© 2020 by ASME



0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.95

1

1.05

1.1

1.15
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FIGURE 4. Data points for fitting the Poincaré section: (a) State values at step i, xi = {ẋi,yi} were chosen and (b) State values that resulted in a
successful step i+1, xi+1 = {ẋi+1,yi+1} were obtained using the forward simulation. The cross denotes the fixed point x0. The control input ui is not
shown

4.3 Poincaré map (reduced state)
As mentioned earlier, the hopper motion in continuous time

and given by 4 state variables given by {x, ẋ,y, ẏ}. The use of
Poincaré map at the apex when ẏi = 0 eliminates the vertical ve-
locity from the map. The state variable denoting the horizontal
position at the apex xi also drops as it does not capture the peri-
odicity of the motion. Thus, using the Poincaré map for analy-
sis, we reduce the system state to 2 variables {ẋi,yi}. Thus the
Poincaré map is xi+1 = F(xi,ui) has xi = {ẋi,yi} and ui = θi or
foot placement angle at touchdown.

4.4 Computer simulations
The model parameters for the simulation are mass m = 100

kg, nominal leg length `0 = 1 m, spring constant k = 10,000
N/m, and gravity g = 9.81 m/s2 based on human idealized to
the SLIP model [15]. We build the forward simulator using
MATLAB 2016a. It involves simulating a single step using
phases/event stated in Fig. 3 (b) and Eqns. 7 and 8. We inte-
grate these equations using ode113 with an integration tolerance
of 10−13 with in-built function events to detect a change in phase.
Since we treat the simulator as a black-box, we also put checks
to detect simulation failure. We consider the robot has failed
if it meets any of the following conditions: (1) the horizontal
speed (ẋ) is negative indicating falling backward; (2) the height
of the point mass (y) is below the ground; (3) during take-off
from the ground, the vertical velocity is negative (ẏtake-off < 0);
and (4) at the apex of the flight phase it meets the following con-
dition, yapex-of-flight-phase < 0.95`0. The last condition is arbitrarily
set to 0.95 and is used to ensure that there is sufficient ground
clearance for the swing leg.

5 Results
Fixed point: The Poincaré map presented in Sec. 4.3 has 2
equations but three variables, two states ẋi, yi, and one control
θi. We fix one of these three variables and solve for the remain-
ing two using the two equations. Here, we chose a foot place-
ment angle as 20◦ (0.349 rad) and solve for the fixed point x0
that satisfies Eqn. 2. We used the MATLAB function fsolve to
get x0 = {ẋ0,y0} = {2.04,1.038}. For all simulations we chose
the design matrices in the cost function to be Q = diag(1,100),
R = 0.1. In Q we have different values in the diagonal matrix
in order to normalize the states, ẋ and y since they have different
units.

Discrete Linear Quadratic Regulator (DLQR): For the dis-
crete linear quadratic controller we use finite difference (specifi-
cally, central difference with a perturbation size of 10−4) and the
exact Poincaré map F to obtain the numerical values for A and B

A =

[
2.503, −2.568
−0.312, 1.534

]
B =

[
−11.663

2.426

]

The stability of open-loop system is given by the eigenvalues of
A and are 1.0 and 3.03. The system is stable if all the eigenvalues
are less than 1. For the spring loaded inverted pendulum, one
eigenvalue is always 1 because the system is conservative, i.e., it
conserves the energy while the other eigenvalue of 3.03 showing
that the limit cycle is unstable.

Closed-form approximation of the Poincaré map: To find an
approximation of the Poincaré map we proceed as follows. Our
data range for the input are: apex horizontal velocity in the range
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FIGURE 5. Initial conditions that are stabilized by the different controllers: The horizontal axis is the apex horizontal speed ẋi and vertical axis
is the apex height yi for: (a) non-linear optimization with exact F , (b) discrete linear quadratic regulator based on linearized model F , (c) optimization
using polynomial regression of order 2 for F (P2), (d) optimization using Gaussian process (GP) regression for F , and (e) optimization using neural
network (NN) regression approximation to F . The cross denotes the fixed point x0 and gray region is the set of initial conditions that are stabilized by
the particular controller.

0.5 m/s ≤ ẋi ≤ 5 m/s with 0.5 m/s increments; apex height in
the range 0.95 m ≤ yi ≤ 1.15 m in with 0.025 m increments; and
foot placement in the range 5◦ (0.087 rad)≤ θi ≤ 60◦ (1.042 rad)
with 5◦ (0.087 rad) increments. This generates 1080 input data
points {ẋi,yi,θi}. For each input data point, we run a forward
simulation (see Sec. 4.4) and save the output data, {ẋi+1,yi+1}.
Out of these 1080 data points, the robot failed 916 times and
successfully took a step 164 times. This means that we only
have 164 data points to fit a closed-form expression. Figure 5 (a)
shows the input data xi that resulted in a successful step and the
corresponding Poincaré map xi+1. We use 75% or 119 successful
steps for training and the rest 25% or 45 for testing. Each of the
two outputs ẋi+1 and yi+1 was curve fitted to the inputs, xi and ui
separately using each of the three regression models.

1. Polynomial regression model: A second order polynomial
(P2) for each of the two outputs. Each polynomial has 10
constants. We use MATLAB function lsqnonlin to fit each
polynomial. In our testing, we found that 87% and 100% of
the fit for ẋi and yi respectively was within 90% accuracy.

2. Gaussian process regression model: A Gaussian process
(GP) with squared exponential kernel as the covariance
function and a constant basis function for each of the two
outputs. The number of parameters in this model is only 2.
We use MATLAB function fitrgp to fit the GP. In our test-
ing, we found that 91% and 100% of the fit for ẋi and yi
respectively was within 90% accuracy.

3. Neural network regression model: A neural network (NN)
with 14 hidden layers for each of the two outputs. The model
contains 71 constants. We use the MATLAB function fitnet
to fit the NN. In our testing, we found that 91% and 100%
of the fit for ẋi and yi respectively was within 90% accuracy.

To summarize, our metric for 90% accuracy was met by 90% of
the ẋi data and 100% of the yi data.

Evaluating the controllers We have discussed 5 controllers,
(1) Discrete linear quadratic regulator (see Sec. 3.2.1), (2) (3)
(4) Discrete nonlinear quadratic regulator (see Sec. 3.2.2) with
closed-form approximations for the Poincaré map P2, GP, and
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NN respectively and (5) Discrete nonlinear quadratic regulator
(see Sec. 3.2.3) with exact Poincaré map. We tested each of these
controllers on the same set of 90 initial conditions generated as
follows. We generated 10 apex horizontal velocities, 0.5 m/s
≤ ẋi ≤ 5 m/s in increments of 0.5 m/s and 9 apex vertical heights
0.95 m ≤ yi ≤ 1.15 m in increments of 0.025 m. By combining
apex horizontal velocities and apex vertical heights we obtained
10× 9 = 90 initial conditions to test the 5 controllers. For the
non-linear optimizations (see Secs. 3.2.2 and 3.2.3), we con-
strained the foot placement angle to be in the range 5◦ (0.087
rad)≤ θi ≤ 60◦ (1.042 rad). For each of the 90 initial conditions,
we use each of the 5 controllers to compute the foot placement
angle for 5 consecutive steps. Given an initial condition for the
start of step 1, if the robot can run successfully for 5 consecu-
tive steps without falling down, then we consider the controller
to stabilize the robot for that initial condition. We simulated only
5 consecutive steps because we found that if the system failed, it
usually did so on steps 1 to 3, thus 5 was long enough to find out
stability without leading to extensive forward simulations.

Figure 5 shows the results for each of the 5 controllers.
The shaded region indicates the stable initial conditions (i.e.,
the robot does not fall in 5 consecutive steps). The percent-
ages of initial conditions successfully stabilized for each con-
troller were: linear optimization with linearized model for F was
48.89%, non-linear optimization with F approximated with P2
was 91.11%, with GP was 82.22%, with NN was 93%, and

non-linear optimization with exact F obtained through integra-
tion was 96.67%.

Figure 6 gives the results for the 5 controllers when starting
from the same initial condition xi = {2.5,1.075}, an arbitrary
choice. In (a), we show the foot placement angle as a function of
the step length. We can see that except DLQR, other four con-
trollers give almost the same foot placement angle after about 2
steps indicating that the robot has reached a steady-state. We can
infer the steady-state value from the plot for ẋi in (b) and for yi
in (c). We show the one-step cost in (d), where the lowest cost
indicates a more optimal controller. We can see that optimiza-
tion with neural network model approximation and exact model
have the lowest cost, while the optimization with polynomial and
Gaussian process regression have the highest cost. The cost of
DLQR is in between but keeps changing every step, it does not
achieve a steady-state value. Figures 6 (e) shows the time needed
for computation of the foot placement control and (f) shows the
time from apex to foot placement. Note that both these plots
have the same y-scale to enable easy comparison. For the opti-
mization to find the controller in real-time, the computation time
should be less than the time taken to go from apex to stance. We
can see that only GP, P2, and DLQR can achieve fast computa-
tion time within the time constraints while NN and SIM-based
computation takes too much time. We performed all computa-
tions using MATLAB on a Macbook circa 2012. We do not see
that the computation time is a real impediment in this case be-
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cause it is possible to speed up the computations using either a
faster computer or using a compiled language (e.g., C).

6 Discussion
The work presented multiple regression model (linear,

quadratic, neural network, and Gaussian process regression)
to create a closed-form approximation of the step-to-step map
for the spring-loaded inverted pendulum model of hopping fol-
lowed by optimization to derive controllers. These results were
compared against optimization using the accurate step-to-step
map obtained through numerical integration. We found that the
quadratic model approximation (P2) offers the best compromise
between the range of initial conditions stabilized and computa-
tionally costs.

The main goal of this paper was to investigate if the closed-
form approximation of the step-to-step dynamics can: (1) stabi-
lize a wide range of initial conditions, and (2) allows fast online
optimization. We found that polynomial (P2) and neural network
(NN) stabilizes a similar range of initial conditions, followed
very closely by the Gaussian process (GP). However, only P2
and GP are fast enough for real-time implementation as the op-
timization time is less time taken from apex to touchdown (see
Fig. 6 (e), (f)). The discrete linear quadratic regulator (DLQR),
although the fastest, can stabilize a relatively small range of ini-
tial conditions.

The speed of online computation of the controller depends
on the complexity of the regression model used. In the case of P2
there are only 10 parameters and GP there are 2 hyper-parameters
in addition to building the mean and covariation matrix using
all data points. On the other hand, NN has 71 parameters and
this adds more time to the optimization. One could potentially
speed up these computations by writing C code but requires ad-
ditional work (e.g., MEX files) and/or using smaller parameter
set, which could potentially decrease the accuracy of the fit and
consequently the number of initial conditions that may be stabi-
lized.

The region of attraction (ROA) or the range of initial con-
ditions that are guaranteed to be stabilized is another metric for
the robustness [30]. Figure 5 demonstrates the ROA for the 5
controllers. The optimization with an exact step-to-step map has
the largest region of attraction followed by the NN and P2 with
similar ROA’s, followed closely by GP, and finally DLQR. These
results suggest that approximating the step-to-step or Poincaré
map using low-order polynomial models is a viable approach for
online optimization.

A large volume of work exists on approximating the dynam-
ics near the neighborhood of the fixed point using a linear or
quadratic model of the step-to-step map (e.g., [6, 31]). In this
paper, although we used a quadratic model (P2), we used data
from a wider range of initial conditions near the fixed point to
curve fit the parameters of the quadratic model. Our P2 approxi-

mation was accurate to about 87% for horizontal speed, yet they
stabilized almost 91% of initial conditions. This result suggests
that using approximation over a wider range around the fixed
point, not in the small neighborhood region, has the potential to
stabilize a wider range of initial conditions.

How accurate should the model be for control? Schwind
and Koditschek [27] suggest that 90% or more model accuracy
is sufficient. Using the thumb rule of 90% model accuracy, we
found that our regression models can achieve this accuracy in
87%− 91% of the data depending on the model used. Our con-
trol achieves stable hopping for 82%−93% of initial conditions
compared to 96% achieved by the exact step-to-step map. These
results suggest that 80−90% model accuracy is perhaps a good
metric to aim for to enable high fidelity control.

One of the prime advantages of using the Poincaré map for
control is that the map is a continuous function of the state and
controls [32], although the instantaneous dynamics are piecewise
continuous or even discontinuous due to changing phases. We
exploit the fact to approximate the Poincaré map with a smooth
function. Another advantage is that during data generation we
eliminate combinations of control that lead to a failed simulation,
so in a way, stable solutions are embedded inside the regression
model. The other advantages of our methods are that we can
use any black-box simulator for generating the data needed for
closed-form approximation and the use of the closed-form model
allows for fast computation that may enable real-time optimal
control.

We have the following recipe for practical implementation
of the method on experimental testbed including a higher degree
of freedom robot. First, identify the weakly actuated dynamics
of the robot [33] (e.g., for sagittal plane biped walker this is the
under-actuated degree of freedom, for a sagittal plane biped run-
ner this is the center-of-mass motion). Second, parameterize the
control on the actuated degrees of freedom such that they are set
once per step and influence the weakly actuated dynamics over
the time scale of the step [29, 34] (e.g., hip actuation could be
parameterized using gains, set-point, amplitude). Third, create a
one-step simulator that takes in input states in the weakly actu-
ated dynamics at a suitably chosen Poincaré section and param-
eterized controls and produces the output state at the Poincaré
section at the next step. Fourth, fit the input/output data to a
suitable regression model (e.g., polynomial, gaussian process re-
gression). These all are to be done offline. Finally, formulate
and solve an optimization problem that minimizes a suitable cost
function using the approximate model.

Our method has several limitations too. Our limited explo-
ration with the spring-loaded inverted pendulum suggests that the
quality of the result depends on the choice of parameterization,
the number of constants used in the fit, etc. These aspects are
specific to the particular system and we need deal with them on
a case-by-case basis. We can interpret the closed-form approxi-
mation errors as a model mismatch that would lead to substantial
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tracking errors although stability may not be an issue. We rely on
step-to-step control and in such a framework we can only initiate
gait transitions at the Poincaré sections as opposed to anywhere
else. We have only considered one-step Poincaré map but it is
possible to use the approach to n-step Poincaré map but would
make the data generation phase quite complex. Alternately, the
one-step map may be used to control over multiple steps, but
there is a possibility of accuracy degradation as predictions are
done over multiple steps.

7 Conclusions
In this paper, we presented the closed-form approximation

of the step-to-step map to enable fast optimization of the spring-
loaded inverted model of hopping. We found that both paramet-
ric (e.g., polynomial, neural network) and non-parametric (e.g.,
Gaussian process regression) approximations can represent the
step-to-step map with sufficient accuracy to enable balance con-
trol over a wide range of initial conditions and also fast enough
for online implementation. We conclude that offline approxima-
tion of the step-to-step map and its use for fast online optimiza-
tion is a viable method for on-the-fly optimal control of legged
robots.
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