Inverse Kinematics

Inverse kinematics problem

For a given desired end-effector position
$X_{\text {ref }}=\left\{x_{r e f}, y_{r e f}\right\}$
Compute: $q=\left\{\theta_{1}, \theta_{2}\right\}$

We know
$r_{Q}=X_{\mathrm{ref}}=f(q)$

Compute
$q=f^{-1}\left(X_{\mathrm{ref}}\right) \mathrm{f}$ is nonlinear

Inverse Kinematics using Jacobian

$$
\begin{aligned}
& \mathbf{f}=\left[\begin{array}{lllll}
f_{1}(\mathbf{q}), & f_{2}(\mathbf{q}), & f_{3}(\mathbf{q}), & \cdots & f_{m}(\mathbf{q})
\end{array}\right] \quad \text { size }=\mathrm{m} \\
& \mathbf{q}=\left[x_{1}, \quad x_{2}, \quad \ldots \quad x_{n}\right] \\
& \text { size }=\mathrm{n}
\end{aligned}
$$

$\underset{\sim}{\mathbf{J}}=\frac{\partial \mathbf{f}}{\partial \mathbf{q}}=\left[\begin{array}{ccccc}\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \frac{\partial f_{1}}{\partial x_{3}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \frac{\partial f_{2}}{\partial x_{3}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \frac{\partial f_{m}}{\partial x_{3}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}\end{array}\right] \quad$ size $=$ mxn

Inverse Kinematics (Theory)

Position of $\mathrm{Q} \quad r_{Q}=f(q)$
Velocity of Q

$$
V_{Q}=\frac{\partial f}{\partial q} \dot{q}=J \dot{q}
$$

$$
\frac{d r_{Q}}{d t}=J \frac{d q}{d t}
$$

$$
\Delta r_{Q}=J \Delta d q
$$

Key equation

$$
\Delta d q=J^{-1} \Delta r_{Q}
$$

Inverse kinematics example

$r=$ radius of circle

