Robotics with MuJoCo, HW 5

Topics: Inverse kinematics

Email solutions to pranav@uic.edu.

1. Drawing an astroid with a three link manipulator:

Consider a three-link manipulator with link lengths of $\ell_{1}=1 \mathrm{~m}, \ell_{2}=\ell_{3}=0.5 \mathrm{~m}$ and joint angles θ_{1}, θ_{2}, and θ_{3} as shown in Fig. 1 (left side). Your goal is to get the tip of the three-link manipulator to draw an astroid, an example is shown in Fig. 1 (right side). While drawing the astroid, the link QR should be vertical or along the y -axis.
The equation of an astroid in parametric form is given by

$$
\begin{align*}
& x=x_{0}+a \cos ^{3} \theta \\
& y=y_{0}+a \sin ^{3} \theta \tag{1}
\end{align*}
$$

where x_{0} and y_{0} is the center of the astroid and a determines the size of the astroid. Feel free to choose appropriate values for these parameters.

Figure 1: Manipulator and an astroid
HINT: Here you want to regulate three things: the x -position and y -position of the endeffector, and the z-orientation of the end-effector with respect to the world frame. You would need the Jacobian related to the x , and y position (1st and 2nd row in jacp in mj_jac) and z-orientation (third row in jacr in mj_jac). The Jacobian you populate will be of dimension 3×3. If the end-effector moves in the $\mathrm{x}-\mathrm{z}$ plane these rows will change to first and third row of of jacp and second row of jacr. Click this link for more info. about mj_jac: https://mujoco.readthedocs.io/en/latest/APIreference.html\#mj-jac

