Robotics with MuJoCo, HW 2

Homework due on 02-13-2022, Topics: Modeling and controlling pendulums
Email solutions to pranav@uic.edu.

1. Rott's pendulum:

The Rott's double pendulum is another system (besides the standard double pendulum) which demonstrates chaotic behavior. You can watch a video here: https://youtu.be/dhZxdV2naw8. Fig. 1 shows model of the Rott's pendulum. Note that the first link (connected to the ground at O) is shown in blue and is L -shaped while the red link is connected to the blue link via a hinge joint at P . Model the pendulum in xml. Choose a configuration such that pendulum will start to move when loaded through MuJoCo's simulate file. Submit the xml file only.

Figure 1: Rott's pendulum

Continued on the next page
2. Coupled pendulum: Figure 2 shows two single link pendulums with link length ℓ, mass m, with negligible inertia. The rotation of the each link is described by angles θ_{1} and θ_{2} as shown. The pendulums are coupled through a spring at point C_{1} and C_{2} at a distance c from the hinge point for both links. The spring constant is k. the spring is unstretched when $\theta_{1}=\theta_{2}$. Assume suitable values for the model parameters.

Figure 2: Coupled pendulum
(a) Model the two pendulums in xml. Then write code in C to simulate the spring. HINT: You should be able to use xfrc_applied to simulate the spring force.
(b) Set the following initial condition $z_{0}=\left[\begin{array}{llll}\pi / 10, & 0, & \pi / 10, & 0\end{array}\right]$. Observe the animation and see if it looks similar to the uncoupled oscillation in this video: https://youtu.be/CguKK19mX2s?t=137 (starts at 2 min 17 sec).
(c) Now change the initial condition to $z_{0}=\left[\begin{array}{llll}\pi / 10, & 0, & -\pi / 10, & 0\end{array}\right]$. Observe the animation and see if it looks similar to the uncoupled oscillation in this video: https://youtu.be/CguKK19mX2s?t=156 (starts at 2 min 36 sec).
(d) Now change the initial condition to $z_{0}=\left[\begin{array}{llll}\pi / 10, & 0, & 0, & 0\end{array}\right]$. Observe the animation and see if it looks similar to the mixed modes observed in this video:
https://youtu.be/CguKK19mX2s?t=171 (starts at 2 min 51 sec). Generate a plot for $\theta_{1}, \theta_{2}, \theta_{1}+\theta_{2}$, and $\theta_{1}-\theta_{2}$. You should see that the sum and difference to be periodic while the individual values are not. The two angle interfere with each other to create a phenomenon known as beats
https://en.wikipedia.org/wiki/Beat_(acoustics). The sum and difference have a dominant frequency that one can find using Fast Fourier Transform:
https://en.wikipedia.org/wiki/Fast_Fourier_transform.
Submit a folder containing all files needed to run the simulation. Set the C file to initial conditions for the third (last) case.

