

Application: ON-OFF actuators such as latching, locking, & triggering (1) Woshing machine values (2) Auto mobile doors and starter solenoids (3) Pin ball machines in plungers and bumpers.

Relay: This is a solenoid, but used to make and break mechanical contact between electrical leads.

A small voltage input to the relay controls a large current through the relay contact. Applications: Power switches

Relay is similar to transistor: both act like a switch; swall voltage in relay / swall current in base causes large voltage in contact / large current in collector. Small T / are

(DPDT)

8 leads

4

(4) PC compound motor

- Series and parallel field windings - Used when there is a need for high torque as well as constant speed such as punch pr-esses

-12, 0,	Θ :	These	do	not	reser se	their	motion
when	the	pola	nty	15	Hipped,	\sim	
	\sim						

Permount Magnet DC motor

$$I = \frac{1}{L_{k}} + \frac{1}{L_{k}}$$

Lec25_Actuators Page 9

Re-arranging

$$T = -\left(\frac{ke}{k}\right) + \left(\frac{k}{k}\right) - T$$
To compute shall torque, $T = T_{S}$ and $w = 0$
To compute no load speed, $w = W_{max}$ and $T = 0$
To compute no load speed, $w = W_{max}$ and $T = 0$
To compute no load speed, $w = W_{max}$ and $T = 0$
The max $T = \frac{V}{k_{e}}$
The power, P , is given by $P = T_{w}$
Number of power
 $dP = T_{S} \left(1 - \frac{w^{2}}{w_{max}}\right)$
Let no compute the extrement value of power
 $dP = T_{S} \left(1 - \frac{2w}{w_{max}}\right) = 0$
 $= 1$
 $W = w_{wax}$

$$\int \frac{d^2 p}{d\omega^2} = T_S \left(\circ - \frac{2}{\omega_{max}} \right) < \circ$$

P achires maximum value at $\omega = \omega_{max}/2$

$$\int \frac{P_{max}}{T_S} = \frac{T_S}{4} \frac{\omega_{max}}{4}$$

P max $\frac{1}{2}$

P max $\frac{1}{2}$

P max $\frac{1}{2}$

P max ω_{max} ω_{max} ω

A 0.25 hp (1 hp = 746 W) DC-geared motor is used to lift a mechanical load of 10 kg using a pulley arrangement as shown below. The no-load motor speed is 300 rpm and the starting torque is 23.8 Nm. The frictional resistance in the pulley drive is 2 Nm. Neglecting inertia of the rotor, the pulley, and the cable, determine

a) The initial acceleration of this load

Wmax = 300 spm

 $JT_{S} = 23.8$

FF = 2

(α)

- b) The steady-state lifting speed of the load
- c) The output horsepower of the motor at steady state

 C_{motor} $\int M T$ $T_{mathew} = T_{S} - T_{F}$ $M_{o} = T (0.1S) = C_{mathew} T$ T - ng = ma $a = 4.73 m/s^{2}$

FBD

(b) When
$$a = 0$$
, mano is moring at stady pad
 $T = Wg = Mq^{0}$
 $T = Wg = T(0.15)$
 $T_{motor} = T_{5} - T_{F}$
 $T_{5} = T_{motor} + T_{F}$
 $= T(0.15) + T_{F}$
 $T_{5} = 16.7 Nm$
 $T_{5} = 16.7 Nm$
 $T_{5} = 16.7 Nm$
 $T_{5} = 16.7 Nm$
 $T_{5} = 16.7 m$
 $W = 7$
 $T_{5} = 300 T_{F}$
 $W = 89.5 T_{F}$
 $W = 89.5 T_{F}$

() $P = TW = (6.7 (99.5) = 0.21 \frac{hp}{hp}$

