Word problems

- 1 Define the problem
- 2) Weite quasi-logic statements
- 3) Write Boolean expression
- 6) Simplify to use niminum number of gates.
- 5) Draw circuit diagram and / or mith table

EXAMPLE

following houristic to decide if the student will attend class or not.

The student will attend class on Theodays and if the student got at least 6 hrs.

of sleep or the student will attend class if there is an exam and if the student got at least 6 hours of steep.

Derelop a book an expression for the Students heuristic

- 1) Y = output, altered class or not

 A = input, A=1 Tuesday; A=0 Not Tuesday

 B = input, B=1 exam; B=0 No exam

 C = input; C=1 >, 6 hr step; C=0 < 6 hr step.
- Attend class (Y=1) if it is Musday $[A=1] AND if <math>\geq 6 hrs$ steep (C=1) [OR]

[if there is an exam (B=1) AND if ≥ 6 hrs sleep (C=1)

 $3) Y = A \cdot C + B \cdot C = \frac{10R}{2 \text{ AND}}$ 2 Chips $Y = (A + B) \cdot C = \frac{10R}{2 \text{ AND}}$ 2 AND

$$\frac{P+Q}{P+Q} = \frac{P\cdot Q}{P\cdot Q}$$

Example 2

An investor in Mechatronics startups uses the following heuristics to invest in potential new companies

- ◆ 1) The startup is rated for its mechanical design content, either a bad or a good
 - 2) The startup is rated for its business potential, either a bad or a good
 - 3) The sales pitch by the founders of the company. This is rated on a scale of 0 to 3 with 0 being poor and 3 being excellent

The investor invests in the startup if the mechanical design content is good and the sales pitch is rated 3 or if the mechanical design content is good or the business potential is good and the sales pitch is rated either 2 or 3.

Develop a Boolean expression and then a Boolean circuit for the investors heuristics

C= 1, D=1 rating 3

@ With quasi-logical statements
Investor will invest if (Y=1)
sales vital is 3 (C=1, D=1)
Sales vital is 3 (C=1, D=1)
OK .
b) much. design is good (A=1) OR
business potential is good (B=1) AND
soles jiten is 2 08 3
$(C=1,D=0) \qquad (C=1,D=1)$
3) Write a boolean expension
$Y = A \cdot C \cdot D + (A + B) \cdot (C \cdot \overline{D} + C \cdot D)$
(a) (b)

(4)

(3) Simplify the expression

$$Y = A \cdot C \cdot D + (A + B) \cdot (C \cdot \overline{D} + C \cdot D)$$

$$= A \cdot (\cdot D + (A + B) \cdot C (\overline{D} + D)$$

$$= A \cdot (\cdot D + (A + B) \cdot C)$$

$$= A \cdot (\cdot D + A \cdot C + B \cdot C)$$

$$= A \cdot (\cdot D + A \cdot C + B \cdot C)$$

$$= A \cdot (\cdot D + A \cdot C + B \cdot C)$$

$$= A \cdot (\cdot D + A \cdot C + B \cdot C)$$

$$= A \cdot (\cdot D + A \cdot C + B \cdot C)$$

$$= (A + B) \cdot (-10R, 1AND - 21C)$$
The expression is the same as previous example. Using the Morgans law
$$Y = A \cdot C \cdot B \cdot C = 3 NAND'S - 1 TC$$

Boolean expressions from truth table Example

A	B	Y
0	٥	O
O	1)
1	0	0
l	1	Ь

Write a Boolean expression for Y There are 2 methods

- i) Find rows where output is 1
- (ii) Form products of inputs such that you get the required output (=1)
- (ii) Sum all expression in (ii)

- 1) Find the rows with o's
- (ii) Form the sum of inputs such that you get the required output
- (iii) Take the product of all boolean expressions in (ii)

A B
$$\gamma$$
 (i) Yow 1, Yow 3, Yow 4
 \rightarrow 0 0 0 \rightarrow $\gamma=0$ $\gamma=0$ $\gamma=0$
 \rightarrow 0 0 0 \rightarrow $A=0$ $A=1$ $A=1$
 \rightarrow 1 0 0 \rightarrow $B=0$ \rightarrow $B=0$ \rightarrow $A=1$
 \rightarrow 1 1 1 \rightarrow $A+B$ \rightarrow $A+B$ \rightarrow $A+B$
(ii) $\gamma=(A+B)\cdot(\bar{A}+B)\cdot(\bar{A}+\bar{B})$
(ANSWER)