
Discrete-Decision Continuous-Actuation control:
balance of an inverted pendulum and pumping a

pendulum swing

Pranav A. Bhounsule1, Andy Ruina2 and Gregg Stiesberg3

1 Mechanical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249
2 Mechanical Engineering, Cornell University, Ithaca, NY, 14853

3 Physics; Cornell University, Ithaca, NY 14853
emails: pranav.bhounsule@utsa.edu, ruina@cornell.edu, grs26@cornell.edu

J. Dyn. Sys., Meas., Control 137(5), 051012 (2015) (9 pages); Paper No: DS-14-1118; doi:10.1115/1.4028851

In some practical control problems of essentially-continuous
systems, the goal is not to tightly track a trajectory in state
space, but only some aspects of the state at various points
along the trajectory, and possibly only loosely. Here we show
examples in which classical discrete-control approaches can
provide simple, low input- and low output- bandwidth con-
trol of such systems. The sensing occurs at discrete state-
or time-based events. Based on the state at the event, we
set a small set of control parameters. These parameters pre-
scribe features, e.g. amplitudes of open-loop commands that,
assuming perfect modeling, force the system to, or towards,
goal points in the trajectory. Using this discrete decision con-
tinuous actuation (DDCA) control approach, we demonstrate
stabilization of two examples: 1) linear dead-beat control of
a time delayed linearized inverted pendulum; and 2) pump-
ing of a hanging pendulum. Advantages of this approach
include: It is computationally cheap compared to real-time
control or online optimization; it can handle long time de-
lays; it can fully correct disturbances in finite time (dead-
beat control); it can be simple, using few control gains and
set points and limited sensing; and it is low bandwidth for
both sensing and actuator commands. We have found the
approach useful for control of robotic walking.

1 Introduction
While digital controllers are by nature discrete and not

continuous, the basic nature of discrete controllers is not well
known by many. This paper, and the demonstrations de-
scribed here, were prepared because our robotic control ap-
proach was criticized at a meeting with the following claims:
“It is well known that a linear control cannot be dead-beat,
and it is well known that a proportional controller cannot
control a system with time delays bigger than the characteris-
tic instability times of the uncontrolled plant.” Both of these

claims are false for discrete control. And discrete control has
some other advantages, even for continuous systems.

We do not claim that any particular result here is orig-
inal, or even surprising to appropriate experts. Rather, we
want to lay out simply some simple, but under-appreciated
by some, discrete control ideas.

Sometimes good-enough control need only get some as-
pects of the system state to occasionally nearly match a goal.
For example, for control of walking, good balance might be
achieved if, about once per step, the body is moving at about
the right speed without having failed (fallen). That is, in
the whole time-trajectory of the robot parts, only a few key
goal points need be achieved, and then maybe only approx-
imately, in each step. The details of the rest of the motion
are unimportant. So why not ignore them? Given that the
goal is essentially low dimensional, why should a controller
be complex or use many numbers to sense the state or to
command the actuators (e.g., why use a fast stream of input
and output commands)? It is interesting to seek a control
that has few free parameters (simple controller) and uses a
few numbers to sense the state and command the actuation
(low bandwidth). Such an approach was used for the 65 km
walk of the Cornell Robot Ranger [1,2]. This paper describes
ideas used in [1] in a more basic way, and in the context of
more simple examples.

Here we advertise classical, and well-known to some,
discrete control as a (possibly under-appreciated) control ar-
chitecture that is computationally simple and can accommo-
date time delays. We do not think of discrete control as
an approximation for smooth continuous control, with sens-
ing and actuation loops as fast as the computer system can
handle. Rather, we think of the control as essentially dis-
crete, with the spacing of control events possibly being much
longer than the computer-bandwidth-limited sensing and act-
ing loops. The times between control decisions may be
comparable to, or even longer than, characteristic instability



times in the underlying system being controlled (the plant).
The general approach here has been both thoroughly de-
scribed, analyzed, generalized and advertised by Gawthrop
and others [3–9]. Here, we present a simple description of
a subset of the ideas in Gawthrop (and colleagues), and two
simple examples.

Here is the basic Discete Decision Continuous Actuation
(DDCA) approach.

I. Control occurs in intervals.
II. Each interval starts with an ‘event’. An event could be

triggered by the
(a.) passage of time,
(b.) a discrete event in the system (e.g., a collision),
(c.) a threshold in some state being reached,
(d.) a computational delay, or
(e.) a mixture of these.

III At the start tn of the interval n the state estimate xn is
read. This state estimate need not be up to date, but may
lag by any known amount.

IV The discrete decision n is made. This is the evaluation
of the control parameters Un. In the linear cases we
consider here, these are amplitudes to be multiplied by
shape functions so that the control outputs are

un(t− tn) = ∑
i

Uni ∗ fi(t− tn).

The policy is then expressed by the gain matrix K, which
is used to calculate

Un =−Kxn.

For the non-linear cases,

un(t− tn) = f (Un, t− tn)

and the policy is the function f .

From the instant of allowed actuation (starting after any sens-
ing, computation and actuation lag), until the start of the
next actuation, the control actions are governed by the essen-
tially feedforward command un(t − tn). The “feedforward”
commands could themselves have feedback. We just con-
sider any real-time (or much-shorter than characteristic sys-
tem time) state feedback within a control interval to be part
of the definition of the plant and actuation.

This architecture is a special case of some control ap-
proaches and a generalization of some others. Even if
the controller is designed using offline optimization, and
thus could be called optimal-policy control, it uses only
sparse and approximate evaluation of the true optimal con-
trol policy. The approach is like model-predictive control,
but without updates, and with the model-optimization being
pre-calculated off-line. And the differential equations of a
model-based estimator are replaced with a simple map (a ma-
trix multiplication in the linear case). It is discrete control,

specialized to the case of continuous systems with continu-
ous activation.

In the examples here we use a linear policy. That is, rel-
ative to sensing and goal states on a nominal uncontrolled
trajectory, we assume a linear map from state deviations and
control actions to the goal states. The linear map is most-
conveniently calculated using a sensitivity computation (fi-
nite difference based differentiation) which we explain in
Sec. 2.

As noted, our control idea seems nearly identical to the
intermittent predictive control idea presented by Gawthrop et
al. with some minor specializations and differences:

1. All computations, but for a single matrix multiplication
once per control interval, are done offline;

2. The events are not necessarily varied with on-the-fly
calculations; but are, in the examples here, pre-defined
(with either time or state triggers); and

3. The net control architecture is simple enough so that it
can be manually tuned. For example, what and when to
sense, when to control, what ‘hold’ functions [10] (we
call them shape functions in this paper) to choose. For
example, our shape functions need not be based on LQ
optimization.

The approach shares these differences with the dead-beat
control approach promoted in [11], of which it is a slight
generalization in that we consider non-constant, possibly
overlapping in time, shape functions and more general ap-
proaches to finding gain matrices (e.g., LQR or intuitive, not
just dead-beat).

Also, the method is somewhat similar in spirit to In-
sperger and Gabor’s act and wait control in which the con-
troller has a wait time (the control signal is zero) followed by
an act time (the control signal is finite) [12, 13].

Open-loop discrete control The ‘posicast’ control method
developed by Smith [14, 15] is an early implementation of
discrete dead-beat control. In the posicast method, part of
the input command is delayed to achieve dead-beat control.
The delay is so chosen that the delayed input signal cancels
the vibration produced by the pre-delay input signal.

The ‘input shaping’ or command shaping [16, 17] is yet
another method to do dead-beat control. In input shaping,
two impulses separated in time are convolved with the input
command. The timing of the impulse is so chosen that the
vibration induced by the first one is exactly cancelled by the
second one leading to a dead-beat control.

Both methods above, the posicast and the input shaping
method, tune the feed-forward command to achieve dead-
beat control. At the discrete-control level this feedforward
is really feedback, as the commands are based on the state
at the start of the interval. The method here is more general
and naive. The control here has the same general structure,
but we do not promote any particular algorithms for picking
optimized shape functions.

Controlling system with substantial delays. As noted,
for continuous systems with delayed sensing or actuation,



it is commonly said that real-time (with delay) state based
feedback can’t stabilize a system whose natural instabili-
ties have a characteristic time shorter than the delay time
[13, 18, 19]. This is especially relevant in, say, models of
animal control which need to account for the slowness of
chemically-based nerve conduction, of neural computation,
and of delays in muscle activation. In robotics delay can be
substantial if either state-estimation or control calculations
are large and the system has limited computational speed.
One feature of the discrete control architecture is that it is
not subject to such limitations; given sufficient sensor and
actuation accuracy, the controller can stabilize an unstable
system, even with long sensor delays. This ability to contend
with time delays, discrete control shares with controllers us-
ing model-based state estimators [14, 20, 21] and also with
Insperger’s act and wait control [12, 13].

2 A simple discrete-control approach
2.1 Control problem

Let the state of the full, possibly non-linear, system be
x(t), the control be u(t) and the continuous system dynam-
ics defined by F with ẋ = F(x,u). Further, assume the sys-
tem has a desirable nominal trajectory x̄(t) associated with a
nominal baseline control ū(t):

˙̄x = F(x̄, ū). (1)

The feedforward command ū(t) in the above equation is open
loop and does not stabilize the system adequately, or perhaps
at all. For example, even with perfect initial conditions, mod-
eling errors, actuator imperfections and disturbances will
cause the system to too-much, or catastrophically (‘failure’),
deviate from the nominal trajectory.

Lacking a way to design a desirable stable open-loop
controller, one needs feedback. The feedback controller sup-
plements u with a control δu that adequately brings the sys-
tem back to the nominal trajectory. In this case, we do feed-
back at discrete times and the control commands are simple
feedforward control functions over the interval. This differs
from common continuous feedback control because we only
sense key quantities and only at occasional times.

2.2 Schematic example
We illustrate the event-based intermittent feedback con-

trol idea with a schematic example. Consider the nominal
trajectory of a second-order system shown as a solid red
color line in Fig. 1. Let n and n+1 be instances of time at
which we are taking measurements from sensors. The time
interval between the measurements n and n+ 1 is typically
on the order of the characteristic time scale of interest (and
not the shortest time our computational speed allows). Let us
assume that we take two measurements, xn = [x1 x2]

′ (e.g.,
a position and velocity) at time n. We want to regulate two
outputs: z1 and z2 (some attributes of the state xn) at time
n+1.

Assume that, due to external disturbances, the system
has deviated from its nominal trajectory. We show the trajec-
tory as a dashed blue color line in Fig. 1 (a). Now, the state
of the system is x̄n (6= xn) at time n. When feedback cor-
rections are absent, the relevant output z̄n+1 (6= zn+1) whose
components, in notational shorthand, are [z̄1 z̄2]

′.
Our feedback controller measures deviations at time n

(δxn = xn− x̄n) and uses actuation to reduce the deviations in
output variables (δzn+1 = zn+1− z̄n+1). For illustration, we
choose two control actions, δun = [U1 f1(t) U2 f2(t)]′, a half
sinusoid and a hat function, each active for half the time be-
tween time n+1 and n (Fig. 1 (c)). The controller adjusts the
amplitudes (U1 and U2) of the two control functions, based
on measured deviations δxn, to regulate the deviated outputs
δzn+1. For example, with a proper choice of the amplitudes,
it should be possible to fully correct the deviations in the out-
put variables, as seen in Fig. 1 (b).

In the simplest cases, we linearize the map from the
measurement section n to the section n+ 1. The sensitivi-
ties of the dynamic state to the previous state and the con-
trols Un = [U1 U2]

′ are: A = ∂xn+1/∂xn, B = ∂xn+1/∂Un,
C = ∂zn+1/∂xn and D = ∂zn+1/∂Un. The brute-force way of
calculating the sensitivity matrices A,B,C and D is by nu-
merical finite-difference calculations. We then have, for our
linearized discrete system model:

δxn+1 = Aδxn +BUn (2)
δzn+1 = Cδxn +DUn. (3)

Again, the δxn are a list of measured deviations, the δzn are a
list of deviations which we wish to control, the U are the ac-
tivation amplitudes (2 in our example above). For simplicity,
assume full state measurement, the controller architecture is
thus

Un =−Kδxn, (4)

where K is a constant gain matrix. We can choose the gains
K to meet or optimize various goals using, say, pole place-
ment or discrete linear quadratic regulator (DLQR) design.

Pole placement This method of control applies only to
cases in which the goal variables z are the same as the state
variables x. The controlled system dynamics are now

δzn+1 = δxn+1 = (A−BK)δxn (5)

The goal of pole placement is to choose the gain K so that
eigenvalues of the closed system (A−BK) have the desired
values. For example, to place the eigenvalues at the origin,
thus making a one-step dead-beat controller, and assuming
the necessary invertibility of B, we would have

K = B−1A. (6)



(a) Trajectory without stabilizing controller

(c) Stabilizing controller (b) Trajectory with stabilizing controller 

n+1n Time

x

x

Nominal Trajectory

Uncontrolled Trajectory

z 
x

Outputs 
Measurements

Control amplitudes

n Instance of measurements

-

-

Basis functions
Event

controller correction

n 

n 

x
x

-
n+1 

n+1 

z
z

-
n 

n 

n+1 

- n+1n
Time

δu

n+1n Time

zNominal Trajectory

Controlled Trajectory
Full output 
correction

,δu(t) = [U1f1(t) U2f2(t)]

δu(t)

f2(t)

f1(t)

U1

U2

U
f (t)

Fig. 1. Schematic example. (a) Shows the nominal (solid red) and deviated (dashed blue) trajectory, for some dynamic variable x of
interest. We measure the state x at the start of a continuous interval, namely at section n. (b) Shows the new deviated trajectory in target
variables z after switching on our feedback controller. In this example, feedback controller nulls (zeros) the output z at the end of the interval,
illustrating a ‘dead-beat’ controller. (c) The feedback motor program has two control actions: a sinusoid for first half cycle and a hat function
for the second half of the cycle. These shapes are arbitrary and different from each other in form only for illustrative purposes. They could
overlap in time. We choose the amplitudes U1 and U2 of the two functions at the start of the interval depending on the error (x− x̄). By a
proper choice of the amplitudes U1 and U2 deviations are, in this example, fully corrected in between measurements. The choice of trigger
for event n, the choice of sensor measurements x, the choice of output variables z, and the control shape functions f (t) are offline design
choices.

For most systems, ones that have the needed controllability,
it is possible to find shape functions f1(t) and f2(t) so that the
matrix B is non-singular. In the same way that a square ma-
trix is generically non-singular, n random shape functions for
an n order system should (generically) lead to a non-singular
B and thus the possibility of 1-step dead-beat control. Of
course the matrix B can be more or less well conditioned de-
pending on how independent the shape functions are from
each other.

Discrete linear quadratic regulator (DLQR) Another
method uses DLQR and applies to any goal function z of the
state. In DLQR [22], we seek to minimize the cost function
Jdlqr defined as,

Jdlqr =
n=∞

∑
n=0

(
δzn+1

T Qzzδzn+1 +Un
T RUUUn

)
, (7)

where Qzz and RUU are matrices that weight the different
components of δzn+1 and Un (RUU must be positive definite
and Qzz positive semi-definite). The weights Qzz and RUU
are design parameters picked to give reasonably fast return to
nominal values but without unduly high gains (which might

tend to lead to control command that are beyond safety lim-
its). They are often given as diagonal for simplicity.

Putting Eqn. (3) in Eqn. (7) and re-arranging gives,

Jdlqr =
n=∞

∑
n=0

(
δxn

T Qδxn +2δxn
T NUn +Un

T RUn
)
, (8)

where Q = CT QzzC, N = DT QzzC and R = DT RzzD+RUU .
Jdlqr can be minimized with a linear state feedback, Un =
−Kδxn with gain K found by solving the standard Ricatti
equation [22]. We do this using MATLAB control system
toolbox (DLQR).

Other goals. The same linear control architecture given by
Eqn. 4, could have gains K chosen to optimize or achieve
other criteria that do not fit into standard basic linear con-
trol formalisms. For example, there could be a weight on the
sparseness of K, on non-quadratic costs for error and control
over some range of initial conditions, on the basin of attrac-
tion for the non-linear system, etc. To calculate K one might
then require more involved optimization calculations, but the
structure of the resultant controller would be preserved. Sim-
ilarly the choice of shape functions could be subject to opti-
mization on independence, smoothness, maximizing control



authority, etc.

Factors to consider while designing the controller: The
systems we are interested in controlling are not those in
which we do measure control quality by how closely a target
is followed, clearly the type of intermittent control we dis-
cuss here is not optimal for that. Rather, we are interested
in preventing total system failure. For walking or for an in-
verted pendulum, falling down is failure. To slightly gen-
eralize, by failure we mean that the system state has moved
outside a particular target region surrounding the target point.
How is this region defined? In practice, it is the region out-
side of which non-linear effects lead to divergence of the so-
lution to points much farther from the target (e.g., falling
down). Sticking to the linear model, the user has to sup-
ply the target region based on intuitions, experience, or non-
linear modeling (all of which are outside the coverage of this
paper).

Some issues in the controller design include:

1. Selecting a suitable section or instance of time to
take measurements — this instant should be when the
dynamic-state estimation is reasonably accurate, and
when dynamic-state errors which cause failure are ev-
ident;

2. selecting measurement variables (xn) that are well-
predict system failure ;

3. picking output variables (zn) that can well-correct
against system failure; and

4. picking actuator shape profiles ( f (t)’s) that have large,
and relatively independent, effects on the target vari-
ables, and are also sufficiently smooth for implementa-
tion with real motors.

We next discuss the above points with in the context of a
walking robot.

Example: Controlling a bipedal walking robot For a 2D
bipedal robot walking at steady speed, here is how we can go
about designing a discrete controller [23]. A typical walk-
ing step of a bipedal robots includes two phases: a smooth
continuous phase in which the entire robot vaults over the
grounded leg, and a non-smooth discontinuous phase in
which the legs exchange roles.

1. Suitable section or instance of time to take measure-
ments: Any instant not-close to support-exchange is a
good time for measurement. This is because the mea-
surements are typically noisy during the non-smooth
support change (heel-strike collision).

2. Suitable measurement variables (xn) that are represen-
tative of system failure: The state of the lower body is
most important for walking balance, so good measure-
ment variables are the state (position and velocity) of the
stance leg.

3. Suitable output variables (zn) that also correlate with
system failure: Step time, step length are important
quantities to regulate during walking, and they serve as
good output variables.

4. Suitable actuator shape profiles ( f (t)’s) that have large
and relatively independent effects on the target vari-
ables: For leg swing, for example, two torque profiles,
one with large amplitude near the start of the interval,
and one with large amplitude near the end, yield good
control authority over position and velocity of the swing
leg at the end of the interval.

Once the above quantities are picked, we can check the sys-
tem controllability. If the system is not well controllable
(correction of reasonable disturbances requires unreasonable
actuation amplitudes) the first likely fix is picking better ac-
tuation shape functions.

As noted, we used this discrete feedback control idea
to stabilize steady walking gait of a bipedal robot leading to
energy-efficiency record and long distance 65 km walking
record [1, 2, 24].

2.3 Computing the linearization
For linear control approaches, the gain selection de-

pends on having the linearized map Eqn. (2) and Eqn. (3)
from Eqn. (1). We assume we have a system, or computa-
tional model of the system, with which we can perform nu-
merical experiments. To get the matrices A and C, we can
perturb xn element-wise and use finite difference to compute
these matrices. Similarly to get matrices B and D, we can
put in small amplitudes of the controls Un and use finite dif-
ference to compute the sensitivities.

3 Balance of a simple inverted pendulum
Amongst the simplest mechanical control problems is

balance of a simple inverted pendulum with a stationary
hinge at its base. Our experimental system has a pendulum
length of length, `∼ 1m, and hence a characteristic instabil-
ity time of

√
`/g ≈0.32s. To highlight a benefit of discrete

control, we will sense once per second, three times longer
than the characteristic instability time.

3.1 Inverted pendulum model
For simplicity we start with the linearized equations.

The inverted pendulum shown in Fig. 2 (a) has this linearized
governing equation:

ẋ = F(x,u) = ax+bu, (9)

where θ = x1, θ̇ = x2, u = Tm, a =

[
0 1
g
` 0

]
, and b =

[
0
1

m`2

]
,

3.2 Balance Controller
Next, we design an event-based feedback controller (see

Sec. 2). As noted, successful stabilizing control depends on
good-enough selection of four key quantities: a suitable sec-
tion or instance of time to take measurements, measurement
variables (xn), output variables (zn) and nature of controls ac-
tions (Un). We discuss these next.



Po
si

tio
n,

 (r
ad

)
Ve

lo
ci

ty
, (

ra
d/

s)
To

rq
ue

, (
N

m
)

0

0.2

0.4

−1

−0.5

0

0.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−10

−5

0

5

Time, (s)

Deviation
Full correction
 of deviation

0

0.2

0.4

−1

−0.5

0

0.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−10

−5

0

5

Time, (s)

(a) (b)
Event Event

U1
U2

U1

U2

Full correction
 of deviation

Deviation
Full correction
 of deviation

Full correction
 of deviation

Fig. 3. Simulation results for balance of a simple inverted pendulum The first column (a) uses constant control function and
second column (b) uses sinusoidal control functions. The first, second and third row correspond to joint angles vs time, joint rate vs time and
control torque vs time, respectively. In both cases the system is let go from an initial position of 0.4 rad and initial velocity of 0. We used the
linearized governing equation to do these simulations.

G

H

g

θ

l

m

Tm

G

H

g

θ

l

m

Tm

(a) Inverted Pendulum (b) Simple Pendulum

Fig. 2. (a) Inverted pendulum and (b) Simple pendulum.
The pendulum in both cases consists of mass m at G and attached
to a massless rod of length ` and controlled by a motor via a torque
Tm at the hinge joint H. Gravity is g.

Here we base our ‘event’ on the passage of time, we
take measurements once every T = 1s. We choose our output
variables zn to be the same as the measurement variables xn,
i.e. the joint angle and the joint velocity. We choose two con-
trol actions, δun = [U1 f1(t) U2 f2(t)]′, each active for half
the time between time n+1 and n. Later we will make spe-
cific choices for the control functions f1(t) and f2(t). Also
note that difference between scalar u in Eqn. (9) and vec-
tor δun. The former is the instantaneous motor torque while
the latter is a set of discrete control actions (also in the units
of motor torques) that are functions of time. Each action is

active for T = 1s each.
Our nominal trajectory has x = 0,u = 0. Putting A =

∂xn+1/∂xn, B = ∂xn+1/∂Un, where Un = [U1 U2]
′ and noting

that xn+1 = zn+1 we get,

δzn+1 = δxn+1 = Aδxn +BUn. (10)

Note that the instantaneous motor torque, u, is implicitly
present through Un when we did the substitution for δun.

For this linearized example, we find the matrices A and
B analytically,

A = eaT (11)

B =

[∫ τ= T
2

τ=0
ea(T−τ)b f1(τ)dτ,

∫ τ=T

τ= T
2

ea(T−τ)b f2(τ)dτ

]
.

(12)

As an example, we will use pole placement and find a dead-
beat controller of the form Un = −Kδxn, where K is a gain
matrix and put this in Eqn. (10) to get,

δzn+1 = δxn+1 = (A−BK)δxn (13)

In pole placement we find a gain K so that eigenvalues of
the closed system (A−BK) are what we want, in this case
all zeros. As noted above, the gain matrix K this dead-beat
control is then given by, K = B−1A.

A comment on linearity. If the plant is linear then our re-
sulting system is linear, assuming we use a time-based event.
If the event trigger is state-based then the system is still lin-
ear, starting at the event and until the next event. However,



despite the linear calculations in the system and the con-
troller, in the case of event-based control the overall system
is non-linear. For example, doubling an initial disturbance
would not then double the controlled system’s response. See
Sec. 4 for an example of a linear system that becomes non-
linear, after doing the linearization in state and control, be-
cause of a state-based (rather than time-based) event.

3.3 Results
We set up our experiment with a 1 m long rod with mass

of 1 kg attached to its end. For control design we used g =
10 m/s2, ` = 1 m, m = 1 kg. We choose the sampling time
T = 1 s for control. Note again that the characteristic time
scale of this simple pendulum is about 0.32 s (time scale =√
`/g =

√
1/10s ≈ 0.32s), which about 3 times faster than

the sampling time of 1 second that we will be using.

Eigenvalue of uncontrolled system. Putting

a=

[
0 1

10 0

]
,T = 1s in Eqn. (11) gives, A=

[
11.83 3.72

37.28 11.83

]
.

The biggest eigenvalues of the system is ≈ 23.6/s. This im-
plies that disturbance to the system at time t = 0, will grow
by up to a factor of 23.6 in 1 second.

For illustration we use two different pairs of functions of
time: a) f1(t) = 1 for the first half of the interval and zero in
the second half, and f2(t) = 1 in the second half and zero in
the first; and b) f1,2(t) = sin(2πt/T ) but with each function
zero in differing halves of the control interval.

Example 1: Using constants for control functions. We
put

a =

[
0 1

10 0

]
,b =

[
0

1

]
,T = 1,and f1(t) = f2(t) = 1

in Eqn. (12), to get B =

[
0.93 0.15

2.99 0.73

]
.

Using the matrix A calculated earlier and value of B in equa-
tion K = B−1A, we calculated the

gain matrix as K =

[
13.26 4.12

−3.26 −0.67

]
.

Example 2: Using sinusoids for control functions. We
put

a=

[
0 1

10 0

]
,b=

[
0

1

]
,T = 1,and f1(t)= f2(t)= sin

(
2πτ
T

)

in Eqn. (12), to get B =

[
0.56 −0.09

1.82 −0.4487

]
.

Using the matrix A calculated earlier and value of B in equa-
tion K = B−1A, we calculated the

gain matrix as K =

[
21.75 6.76

5.34 1.11

]
.

Fig. 3 shows the joint angle, joint velocity, and com-
manded torque vs time for the simulated inverted pendu-
lum with constant controls and sinusoid functions. In either
case we disturb the system by setting the initial condition
x(0) = [0.4 0]′. Both the control functions are able to can-
cel the effect of the disturbance in one sampling step i.e. 1
sec. In other words, the system achieves dead-beat control in
1 sampling time step. However, note that the choice of the
control functions affects the maximum torques used. While
the constant function uses a max torque of about 5 Nm, the
sinusoid uses a max torque of about 9 Nm.

In both cases the sensing is of 2 numbers (not two func-
tions) per interval, the gains are 4 numbers, and the controller
calculates 2 amplitudes (not 2 functions, we assume that the
control functions are stored at a lower level), and the online
calculation is a single matrix multiplication. This linear con-
troller has achieved dead-beat control and stabilization of a
system with time delay (time between sendings) longer than
the control loop time.

Experimental Verification Fig. 4 shows the experiment.
There is a mass of about 1 kg at the end of the 1 m long
rod. We neglect the mass of the light carbon fiber rod in
the controller design. We measure the joint angles by an in-
cremental encoder. We calculate the joint angular rate from
the joint angles using numerical differentiation followed by
a low pass filter. The joint angle sensor had about 1◦ hys-
teresis error (dead band). The motors have a load-dependent
friction and constant Coulomb friction. The gear backlash
is about 2◦. Using the controller gain, K, obtained from the
constant control function calculated above – which did not
account for backlash, friction, or angle hysteresis – we were
able to balance the inverted pendulum from initial perturba-
tions up to ± 0.5 rad. Because of all the modeling errors and
disturbances, the ‘stabilized’ motion was erratic with an am-
plitude of ± 0.15 rad. We expect this because in the T = 1s
between sensor inputs, disturbances grow by about a factor
of 23. A video of the experiment is available online [25].

4 Pumping a swing
We next present a controller that pumps the pendulum

swing to make it oscillate at a given amplitude, say 1 rad.
This example was also used in [11]. Here we use state-based
triggering. We sense the velocity when the pendulum is verti-
cally down and moving from left to right (see Fig. 2 (b)). We
will pump the swing with an amplitude based on this sensed
velocity.



Pendulum

Motor with 
incremental
encoder

Fig. 4. Experimental verification of event-based intermit-
tent controller to balance a simple inverted pendulum. We
measured the pendulum state – the angle and angular speed – once
per second and used constant control functions active for half a sec-
ond each. We were able to balance the inverted pendulum over a
range of ±0.5 rad. Note that the sensing is 1 s, and the controller
bandwidth is 0.5 s, and is slower than the characteristic time scale
of 0.32 s of the simple inverted pendulum. See reference [25] for a
video.

4.1 Simple pendulum model
The equation of the simple pendulum shown in Fig. 2

(b) is given by

ẋ = F(x,u) = ax+bu (14)

where θ= x1, θ̇= x2, u= Tm, a=

[
0 1

− g
` 0

]
, and b=

[
0
1

m`2

]
,

4.2 Swing controller
We take measurements every time the pendulum is in

the vertical down x1 = 0 and swinging counter-clockwise,
that is, x2 > 0. Our output zn+1 was the target amplitude
of the pendulum when it is on the extreme right position.
We choose one control action, δun = U1 f1(t), where f1(t) =
e−t (an arbitrary choice) that we zero after 0.4s. Why .4s?
Because that is long enough so that the actuator can have
substantial effect even with low amplitude, but ends safely
before a control reversal (the peak in the motion).

4.3 Simulation results
We consider a pendulum length of 1 m with mass of 1

kg attached to its end. We put g = 10 m/s2, ` = 1 m, m = 1
kg.

To compute the linearization in Eqn. (2) and Eqn. (3) we
use a central difference (see Sec. 2.3) with a perturbation size

−1

0

1

Po
si

tio
n,

 (r
ad

)

−4
−2
0
2
4

Ve
lo

ci
ty

, (
ra

d/
s)

0 1 2 3 4 5 6 7 8
0

5

10

To
rq

ue
, (

N
m

)

Time, (s)

Event
U1

Target Amplitude(a)

(b)

(c)

Fig. 5. Simulated result for pumping the swing of a sim-
ple pendulum. The pendulum starts from rest from the hanging
position. (a) Pendulum Angle vs Time, (b) Pendulum Velocity vs
Time, and (c) Torque vs Time.

of 0.001 to generate the A, B, C and D.
The Jacobian of the uncontrolled system, A = 1.0. This

is a system with a neutral equilibrium i.e. the disturbances
will neither grow nor diminish. We also get B = 0.26, C =
0.31, and D= 0.08. We used DLQR with RUU = 1 and Qzz =
250, to get K = 2.68. This gain corresponds to an eigenvalue
of 0.28 for the controlled system.

Fig. 5 shows the effect of our linear controller on this
non-linear system. We start the system from rest and with
zero amplitude. The amplitudes for the subsequent four os-
cillations are 0.94, 0.98, 0.98 and 0.998. In other words,
using our control, we are within 0.2% of desired amplitude
in four oscillations.

5 Discussion
Time delays and linear continuous controllers. It is well
known that linear continuous controllers (e.g. Proportional
Derivative (PD) Controller that does feedback on position
and velocity) have difficulty stabilizing system with substan-
tial delays. In fact, the inverted pendulum presented in this
paper cannot be controlled by a PD controller if the feed-
back delay is longer than

√
2`/g∼ 0.45 s [19]. Insperger et

al. [26] claim that it is possible to increase the feedback delay
by 40% (that is ∼ 1.4×0.45 = 0.63 s) by doing a feedback
on position, velocity and acceleration.

Note that the characteristic equation of a time delayed
system in continuous time has infinite poles [12]. However,
by casting the problem in discrete time, we have finite num-
ber of poles which are often manageable. For example, using
discrete control there is no fundamental limit on the magni-



0 t 2t

t1 t2 t+t1 t+t2

Sensing Times

0th actuation interval 1st actuation interval

System Delay,

τ

t d

Fig. 6. Definition of delay for discrete control of a contin-
uous system. One sensible definition of delay would be the time
t1 between when the system is sensed and when the start of the re-
lated control action. This does not respect an invariance described in
the text. A sensible definition of delay is the time t + t1 between the
start of an actuation interval and the most recent sensing that had an
effect, through previous actuation, on the starting state.

tude of the time delays in relation to the system instability
times.

Definition of delay for discrete control. For a controlled
continuous-system, time delay is the span between the in-
stant of sensing and the start of any resulting control action.
For a discretely controlled continuous system there is no sim-
ple definition of delay that combines delays due to sensing at
intermittent times and delays due to transmission and com-
putation times. For the purposes of discussion it is nice to
have such a definition. For simplicity, assume a linear time-
invariant system.

Let the system be sampled at time 0, t,2t, . . . (See
Fig. 6). Due to essential transmission delays the associated
control actions can start at time instances t1, t + t1,2t + t1 . . .
Assume the actions must end at time instance t2, t + t2,2+
t2 . . . Assume state feedback with action at any time depend-
ing only on the most recently sensed state. For example, in
the interval t1 ≤ τ ≤ t2 the control actions only depend on
the sensing at time 0. Assume the interval of possible action
for sensing at τ = 0 is 0 ≤ t1 ≤ τ ≤ t2 (In our examples, the
actuation intervals match the sensing intervals in duration, so
t2 = t + t1). We seek a definition of delay td in terms of t, t1
and t2.

Let us assume that, based on sensing at t = 0, we send an
instantaneous actuation U1 (e.g., impulsive) at time τ = t−,
just before the next sample. For discrete control purposes
we can write the control equation between the two time sam-
pling intervals as

δxn+1 = Aδxn +B1U1 Action U1 at end of sample interval
(15)

One could say this system has delay t because that is the time
between sensing and action.

Now consider the same system, but with the impulsive
actuation U2 at the start of the sampling interval, i.e. at τ =
0+. That system has no delay between sensing and acting.

In this case, the discrete control equation between the two
sampling intervals is

δxn+1 = A [δxn +B1U2] (Action U2 at start of sample interval).

= Aδxn +AB1U2

= Aδxn +B2U2 (16)

We assume B1 is invertible (which it must be for, say, single-
step dead-beat control). Then if the controls U1 and U2 are
related by U1 = B−1

1 AB1U2 the two systems above have iden-
tical dynamics. Also equivalent to these is any system with
continuous actuation occurring at any time in the interval 0
to t. Thus these two systems should sensibly be described as
having the same delay.

Alternate definition of delay. Two restrictions on our
definition of delay are that

1. For the continuous limit it has to agree with notions of
delay for continuous systems. So for the continuous spe-
cial case, t = 0 and t1 = t2, the formula for delay must
give td = t1 = t2.

2. The definition needs to give the same answer indepen-
dent of when in the available interval t1 ≤ τ ≤ t2 the
controller chooses to use the actuation (see examples
above).

These two candidate definitions pass these reasonability
tests:

1. td is the time from sensing to first action. However, this
doesn’t give the same delay for the two equivalent sys-
tems defined above.

2. td is the average of the action interval. However, this
doesn’t have the property of equivalence between the
choice of acting at the start of the interval or at the end.

A definition that meets the basic constraints is that the effec-
tive feedback delay is from sensing until the start of the next
actuation interval. That is, the effective definition of delay
we favor is

td = t + t1.

For our first examples, where sensing and computation are
instantaneous, but action is in the intervals between sensing,
the effective delay is the sampling interval, td = t. The defi-
nition above for delay answers the question, “Just before the
start of the present period of activation, what was the most
recent sensing that had effect, through previous activation,
on the present state?”

Exponential sensitivities caused by time delay If the un-
controlled system is unstable, unlike for continuous real-
time control, time delays do not cause instability. Rather,
however, imperfections in the model or sensing cause errors
which grow exponentially with the amount of delay with
only a critical-sized sensor error being tolerable. Consider



the observable controlled system with a dead-beat controller
over intervals with span t:

ẋ = ax+u continuous system (17)
δxn+1 = (A−BK)δxn discrete system (18)

A = eat = BK linear dead-beat controller. (19)

Now consider a sensing error δxs so that

δxn+1 = Aδxn−BKδxn +Aδxs (20)
= Aδxs = eatxs. (21)

Thus, even with perfect dead-beat control design noise is am-
plified. Say the largest eigenvalue of a is λ = (system insta-
bility time)−1 ≡ ti thus

Response error = (System error)∗ e
t
ti . (22)

Similar reasoning applies to modeling errors ∆a, so that the
actual system and control are:

δxn+1 = (e(a+∆a)t −BK)δxn discrete system (23)
BK = eat controller not based on model errors.

(24)

For order-of-magnitude calculation, replacing a with it’s
largest eigenvalue and assuming we can do the same with
∆a, and approximating e∆at ≈ 1+∆at we get

xn+1 = ∆ateatxn =
∆a
a

ateatxn =
∆a
a
(t/ti)et/tixn. (25)

Equations (22)-(25) are the essential, unavoidable, control
problem for systems with delay. It is not that such systems
cannot be stabilized. It is that the magnitude of the errors, af-
ter implementing the best possible controls, grow exponen-
tially with the length of the delays. For example, given a
discrete time three times the instability time (t = 3ti) a 10%
error in sensing (δxs = 0.1xs) leads to an output noise of
0.1 ∗ e3 ≈ 2.3 times the original signal error. Thus sensing
errors (assumed proportional to signal size) with

δxs > exp−t/ti δx

can lead to a sensor caused instability. Similarly for model-
ing errors. The largest tolerable modeling error is

∆a
a

=
e−t/ti

t/ti
.

For example, if t/ti = 3 then the largest tolerable modeling
error is ≈ e−3/3 ≈ 1/69. Thus control of unstable systems

with significant time delay cannot be robust to sensing noise
or modeling errors, by the means presented here, or by any
other means,

In systems with intrinsic time delays but faster compu-
tations, the approach here may have little penalty over real-
time model-based methods. However, in systems without in-
trinsic substantial time delays, the method here artificially
introduces time delays, and thus our controls unavoidably
increase, relative to a good continuous control, sensitivity to
modeling errors and disturbances. These are the penalties for
the simple design and reduced bandwidth.

Discrete control to achieve dead-beat control. Dead-beat
control refers to full correction of deviation in finite time
(e.g., see [27] page 201). The ability to achieve dead-beat lin-
ear control is unique to discrete time control; continuous lin-
ear control (e.g., proportional or proportional-derivative con-
trol) always leads to exponentially decaying response (e.g.,
see [22] page 416-417).

Minimal online computation. Unlike realtime model-
based systems this approach needs neither real-time solution
of ordinary differential equations nor online optimization.
The online calculations needed are: 1) Continuous check-
ing of the state-based or clock driven event; 2) Once-per-
discrete-interval calculation of the control parameters, in the
linear case this is a single matrix multiplication; 3) Real time
calculation of the control shape functions (in the linear case
this is a control gain multiplied by a given shape function).
That is, the approach here uses far less computation than
any real-time optimization or model-based control approach
(which use an optimization calculation at each event). The
approach also somewhat simplifies the model-based state es-
timation problem in that the state estimate is allowed to lag
in time,

Under-actuated vs fully actuated. As is a core topic in
control theory, a system that has fewer independent actua-
tors than degrees of freedom can often be controllable. In
the discrete domain, such a system might in some sense be-
come fully actuated. That is, the system can achieve any
state, starting from any other, in one time interval if the n
shape functions are independent. Thus, walking with point
feet, a famously under-actuated system, is fully actuated in
that all degrees of freedom at the Poincare sections can often
be independently controlled in one physical step.

6 Conclusions
In this paper, we developed a simple control framework

for continuous systems that only have occasional, or perhaps
loose, control goals. The controller collects sensor data at
prescribed points in state space or time (event-based feed-
back) and uses these measurements to develop control com-
mands that are feedforward for prescribed time (intermittent
control) to regulate key quantities in a trajectory. This Dis-
crete Decision Continuous Actuation intermittent control ap-
proach has the following advantages; 1) It is intuitive; 2) It



can seamlessly incorporate time delays; 3) It is computation-
ally inexpensive as all gains and set points are computed of-
fline; 4) It is simple, as the control design uses few numbers
(gains and set points) to track a few key quantities; 5) It can
do full correction of disturbances (dead-beat control) using
a linear control law for a linear plant. The price paid for
these gains is less-than-optimal tracking, even of intermittent
goals.

This control approach highlights the essential problem
of control with delays. Delays are well-known to be prob-
lematic. But it is not true that systems with long delay, say
longer than plant instability times, cannot be stabilized. They
can be. Methods to do this include model-based estimation,
using act and wait, or using discrete control of the type de-
scribed here. Rather, the essential problem with system de-
lays is that the errors in the controlled plant state necessarily
grow exponentially in the delay time. Thus, to practically
control a system with long delays requires, relative to the
goal accuracy, exponentially small model errors, exponen-
tially small sensing errors and exponentially small system
disturbances (exponential in the delay time).

On the other hand, if the model is good and expected
disturbances are small, time delay is simply accommodated.

Acknowldegements
The authors would like to thank Jason Cortell, Nicolas

Williamson, and Thomas Craig who developed the pendulum
platform and to anonymous reviewers, whose comments led
to substantial improvements in the text. This research was
supported by an NSF grant number 52836 to Andy Ruina.

References
[1] Bhounsule, P. A., Cortell, J., Grewal, A., Hendriksen,

B., Karssen, J. D., Paul, C., and Ruina, A., 2014. “Low-
bandwidth reflex-based control for lower power walk-
ing: 65 km on a single battery charge”. The Interna-
tional Journal of Robotics Research, 33(10), pp. 1305–
1321.

[2] Ruina, A., 2012. Cornell ranger 2011, 4-legged
bipedal robot. http://ruina.tam.cornell.
edu/research/topics/locomotion\_and\
_robotics/ranger/Ranger2011/ or google
search for cornell ranger, April 2012.

[3] Gawthrop, P. J., and Wang, L., 2006. “Intermittent pre-
dictive control of an inverted pendulum”. Control En-
gineering Practice, 14(11), pp. 1347–1356.

[4] Gawthrop, P. J., and Wang, L., 2007. “Intermittent
model predictive control”. Proceedings of the Institu-
tion of Mechanical Engineers, Part I: Journal of Sys-
tems and Control Engineering, 221(7), pp. 1007–1018.

[5] Gawthrop, P. J., and Wang, L., 2009. “Event-driven
intermittent control”. International Journal of Control,
82(12), pp. 2235–2248.

[6] Gawthrop, P., Wagg, D., Neild, S., and Wang, L.,
2013. “Power-constrained intermittent control”. Inter-
national Journal of Control, 86(3), pp. 396–409.

[7] Gawthrop, P., Lee, K.-Y., Halaki, M., and ODwyer, N.,
2013. “Human stick balancing: an intermittent control
explanation”. Biological cybernetics, 107(6), pp. 637–
652.

[8] Gawthrop, P., Loram, I., Gollee, H., and Lakie, M.,
2014. “Intermittent control models of human standing:
similarities and differences”. Biological cybernetics,
108(2), pp. 159–168.

[9] Gawthrop, P., Gollee, H., and Loram, I., 2014. “Inter-
mittent control in man and machine”. arXiv preprint
arXiv:1407.3543.

[10] Gawthrop, P., 2010. “Act-and-wait and intermittent
control: some comments”. IEEE transactions on con-
trol systems technology, 18(5), pp. 1195–1198.

[11] van der Linde, R. Q., 1999. “Design, analysis, and con-
trol of a low power joint for walking robots, by phasic
activation of mckibben muscles”. IEEE Transactions
on Robotics and Automation, 15(4), pp. 599–604.

[12] Insperger, T., 2006. “Act-and-wait concept for
continuous-time control systems with feedback delay”.
Control Systems Technology, IEEE Transactions on,
14(5), pp. 974–977.

[13] Insperger, T., and Stépán, G., 2007. “Act-and-wait
control concept for discrete-time systems with feed-
back delay”. Control Theory & Applications, IET, 1(3),
pp. 553–557.

[14] Smith, O. J., 1959. “A controller to overcome dead
time”. ISA Journal of Instrument Society of America,
6(2), pp. 28–33.

[15] Hung, J. Y., 2007. “Posicast control past and present”.
IEEE Multidisciplinary engineering education maga-
zine, 2(1), pp. 7–11.

[16] Singer, N. C., and Seering, W. P., 1990. “Preshaping
command inputs to reduce system vibration”. Jour-
nal of Dynamic Systems, Measurement, and Control,
112(1), pp. 76–82.

[17] Singhose, W., 2009. “Command shaping for flexible
systems: A review of the first 50 years”. International
Journal of Precision Engineering and Manufacturing,
10(4), pp. 153–168.

[18] Bhatt, S., and Hsu, C., 1966. “Stability criteria for
second-order dynamical systems with time lag”. Jour-
nal of Applied Mechanics, 33(1), pp. 113–118.

[19] Stépán, G., 1989. Retarded dynamical systems: sta-
bility and characteristic functions, Vol. 200. Longman
Scientific & Technical Essex.

[20] Fuller, A., 1968. “Optimal nonlinear control of systems
with pure delay?”. International Journal of Control,
8(2), pp. 145–168.

[21] Kleinman, D. L., 1969. “Optimal control of linear sys-
tems with time-delay and observation noise”. Auto-
matic Control, IEEE Transactions on, 14(5), pp. 524–
527.

[22] Ogata, K., 1995. Discrete-time control systems.
Prentice-Hall Englewood Cliffs, NJ.

[23] Bhounsule, P. A., 2014. “Control of a compass gait
walker based on energy regulation using ankle push-off
and foot placement”. Robotica, FirstView, 7, pp. 1–11.



[24] Bhounsule, P. A., 2012. “A controller design frame-
work for bipedal robots: trajectory optimization and
event-based stabilization”. PhD thesis, Cornell Univer-
sity, Ithaca, NY, USA.

[25] Bhounsule, P., and Ruina, A., 2013. Feedback con-
trol of a time delayed inverted pendulum. http:
//youtube.com/watch?v=GCGeDHKNzm4 or
http://tiny.cc/pranavb_delay, November
2013.

[26] Insperger, T., Milton, J., and Stépán, G., 2013. “Ac-
celeration feedback improves balancing against reflex
delay”. Journal of The Royal Society Interface, 10(79),
p. 20120763.

[27] Antsaklis, P. J., and Michel, A. N., 2006. Linear sys-
tems. Springer, Birkhauser, Boston, MA.


